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1  |  INTRODUC TION

The emergence of animals and timing of divergences among early 
metazoan lineages are crucial to understanding the processes of bio-
logical evolution itself and the causative links between environmen-
tal changes and biological innovation (Mills et al., 2018; dos Reis et al., 

2015b). The Earth's biosphere had experienced profound changes by 
the end of the Proterozoic Eon: from a unicellular world marked by 
deep-water anoxia arose a multicellular world with complex life forms 
accompanied by major changes in the environment, for example, the 
oxygenation of Earth's surface (Erwin et al., 2011; Knoll, 2011; Raff 
& Raff, 1970; Xiao et al., 2014). Although most extant animals use 
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Abstract
The Neoproterozoic included changes in oceanic redox conditions, the configuration 
of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of 
complex life forms. A much-debated topic in geobiology concerns the influence of 
atmospheric oxygenation on Earth and the origin and diversification of animal line-
ages, with the most widely popularized hypotheses relying on causal links between 
oxygen levels and the rise of animals. The vast majority of extant animals use aerobic 
metabolism for growth and homeostasis; hence, the binding and transportation of ox-
ygen represent a vital physiological task. Considering the blood pigment hemocyanin 
(Hc) is present in sponges and ctenophores, and likely to be present in the common 
ancestor of animals, we investigated the evolution and date of Hc emergence using 
bioinformatics approaches on both transcriptomic and genomic data. Bayesian molec-
ular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma 
during the Tonian Period (1000–720 Ma), prior to the extreme glaciation events of 
the Cryogenian Period (720–635 Ma). This result is corroborated by a recently discov-
ered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin 
of metazoans of ~1,000–650 Ma (but does contradict previous inferences regarding 
the origin of Hc ~700–600 Ma). Our data reveal that crown-group animals already 
possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-
carrying capacity of these animals in hypoxic environments at that time or acted in 
the transport of hormones, detoxification of heavy metals, and immunity pathways.
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aerobic metabolism for homeostasis and growth, much of the mo-
lecular toolkit was present in the closest relatives of animals, which 
may have originated during low-oxygen periods (Jabłońska & Tawfik, 
2021; Sebé-Pedrós et al., 2011). The need for oxygen in animals is 
mistakenly associated with respiratory function exclusively—it is 
now well-known that oxygen is also required for collagen synthesis, 
wound healing, and some immune functions (Coates & Decker, 2017; 
Mills & Canfield, 2014; Schreml et al., 2010). Considering the close 
relationship between animals and oxygen, low-oxygen availability 
was hypothesized to have prevented the origin of animals until the 
late Neoproterozoic (Nursall, 1959). Increased dioxygen availability is 
frequently attributed as a main trigger for animal evolution coupled 
with aerobic metabolism (Mills & Canfield, 2014). Recent studies have 
challenged this canonical view that the origin of animals was con-
trolled primarily by atmospheric oxygen levels (Mills, Francis, Vargas, 
et al., 2018; Mills et al., 2014; Sperling et al., 2013, 2015).

Early animals were likely small, soft-bodied, and collagen-limited 
(although not necessarily collagen-free) organisms that lived under 
low oxygen levels, restricting their use of oxygen to high-priority 
physiological functions (Mills & Canfield, 2014; Towe, 1970). 
Nevertheless, the diversification of lineages prompted increases in 
morphological, physiological, and ecological complexities. Simple 
oxygen diffusion became inefficient to sustain the animal's meta-
bolic needs leading to the evolution of efficient circulatory systems 
and oxygen-binding/transport proteins that provided significant 
advantages (Burmester, 2001; Raff & Raff, 1970; Schmidt-Rhaesa, 
2007). These carrier molecules are proteins that likely originated 
from enzymes whose primary function would be to protect the 
organism from dioxygen toxicity, having acquired the potential for 
molecule transport later (Terwilliger, 1998). The evolutionary history 
of oxygen-binding proteins and early metazoan metabolic demands 
have been intertwined over millions of years, and understanding 
their evolution may provide valuable information about the origin 
and diversification of animals.

Oxygen carrier proteins are biological macromolecules that can 
reversibly bind molecular dioxygen—often referred to as respiratory 
or blood pigments, since they tend to exhibit color when bound to ox-
ygen (Coates & Nairn, 2014; Terwilliger, 1998). They are divided into 
three chemical categories: hemoglobins, hemerythrins, and hemo-
cyanins (Terwilliger, 1998). Hemocyanins (Hc)—macromolecules 
of focus here—are large, extracellular glycoproteins found exten-
sively among arthropods and mollusks (Burmester, 2002, 2015; 
Coates & Decker, 2017). Recent evidence has also demonstrated 
the presence of Hcs and Hc-like genes/proteins in hemichordates, 
tunicates, sponges, ctenophores, and annelids (Aguilera et al., 2013; 
Costa-Paiva et al., 2018; Immesberger & Burmester, 2004; Martín-
Durán et al., 2013). Arthropod and mollusk Hcs are so named due 
to the presence of a conserved Type III dicupric active site, yet they 
emerged independently from an existing copper protein called ty-
rosinase (or phenoloxidase) (Burmester, 2001, 2015; van Holde 
et al., 2001; Terwilliger, 1998).

The genealogy of the Hc superfamily, as well as the evolution-
ary changes associated with the emergence of those different pro-
teins, cannot be understood without considering animal phylogeny 

and divergence times among its lineages. Reconstruction of the 
last common ancestor of animals is problematic, partly because of 
the continued challenges in recovering early animal relationships 
(Giribet, 2016; Halanych, 2016; Pisani et al., 2015; Whelan et al., 
2015) and because recovering early putative animal fossil records 
is challenging (Budd, 2008; Budd & Jensen, 2000). Fossil records of 
early animal life have generated considerable controversy over the 
years, especially when they conflict with timings based on molecular 
clock estimates (Budd & Mann, 2020a, 2020b). Current estimates for 
molecular origins for crown-group Metazoa range from 1,000 Ma to 
615 Ma (Dohrmann & Wörheide, 2017; Peterson et al., 2004; Qun 
et al., 2007; dos Reis et al., 2015). From a biological perspective, 
the fossil record provides the only direct insight into evolutionary 
history (Wood et al., 2020); however, with recent advancements of 
molecular clock methodologies, estimates of divergence of major 
animal lineages are becoming more accurate, and the disparity be-
tween molecular dating and fossil evidence of clade age minima has 
reduced (dos Reis et al., 2015).

Molecular phylogenetic methods have revolutionized our knowl-
edge about protein evolution and function, as well as the evolutionary 
history of taxa (Pagel et al., 1999; Perron et al., 2019; Swofford et al., 
1996). Molecular dating, which is an age estimation of internal nodes 
based on molecular sequences, is now a standard approach and can 
be used successfully for deep time studies, helping to elucidate the 
diversification of major taxa and their association with Earth's history 
(e.g., Delsuc et al., 2018; Irisarri et al., 2017; Marin et al., 2016; Misof 
et al., 2014; Morris et al., 2018; Varga et al., 2019; Wolfe et al., 2019). 
Besides its application to infer the age of biological lineages, the infer-
ence of divergence times based on molecular data can be used to esti-
mate the split times between homologous gene and protein sequences 
(Bezerra et al., 2021; Boden et al., 2021; Shih & Matzke, 2013; Yu & Li, 
2014). Protein functions and adaptations at the molecular level can-
not be understood without considering species phylogeny. In fact, the 
proteins of an organism frequently share its phylogenetic history, and 
physiological adaptations that have evolved in the organism can be re-
capitulated by changes in protein sequences (Burmester, 2002). Thus, 
dating specific genes has the potential to shed new light on pervasive 
issues, such as, the origin of animals.

Although deep divergence time studies can incorporate hundreds 
of genes to estimate divergence times of species lineages (Dohrmann 
& Wörheide, 2017; dos Reis et al., 2015), molecular dating of spe-
cific proteins can recover the evolutionary history of these proteins 
against a background of the evolution of the major taxa in which 
they are found/lost. Molecular dating of deep divergences may be 
challenging, mostly because of issues such as sequence saturation, 
which can affect analyses by biasing the estimated genetic distances 
(Magallón et al., 2013; Schwartz & Muller, 2010; Wilke et al., 2009; 
Zheng et al., 2011). However, estimated divergence times based on 
amino acid sequences that are more conserved compared with nu-
cleotides sequences can alleviate the problem of saturation.

Considering the importance for animal physiology and deep 
divergence times of oxygen-binding proteins, the fact that only 
few studies have systematically addressed dating in the evolution-
ary history of these proteins is surprising (Burmester, 2001, 2002; 
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Prothmann et al., 2020). The recent discovery of Hc-like genes in 
early diverging lineages of Metazoa, including sponges and cteno-
phores (Costa-Paiva et al., 2018), suggests that these proteins were 
already present in the last common ancestor of animals. Here, we 
set-out to date the origin of the Hc superfamily using animal tran-
scriptomic and genomic data. We have taken a comparative phy-
logenetic approach to access the evolutionary history of the Hc 
superfamily and Bayesian dating to infer its emergence. Our results 
are further contextualized with the major environmental changes 
that happened across the Neoproterozoic Era.

2  |  MATERIAL AND METHODS

Arthropod Hcs are members of a protein superfamily that also in-
cludes (a) arthropod phenoloxidases (POs) whose functions include 
sclerotization of the cuticle, wound healing, and innate immunity 
(Whitten & Coates, 2017); (b) hexamerins (HEX), proteins present in 
insects that do not bind oxygen but are considered storage proteins 
associated with molting or nutrition (Burmester, 1999a); (c) decapod 
pseudo-hemocyanins or cryptocyanins (pHc) that are similar to Hcs 
but appear to act as storage proteins in the hemolymph (Burmester, 
1999b); and (d) hexamerin receptors that are present in dipteran in-
sects and are related to their own ligands (Burmester & Schellen, 
1996). Although these proteins form a functionally diverse super-
family, their sequences present highly conserved core elements 
that allow their evolutionary history to be traced (Burmester, 2001; 
Costa-Paiva et al., 2018).

2.1  |  Dataset assembly and alignment

The Hc dataset was formed using 108 previously published Hc su-
perfamily sequences distributed as: (a) 60 Hc sequences (including 
Hc-like); (b) 34 POs; (c) 11 HEXs; and (d) 3 pHc (Aguilera et al., 2013; 
Burmester, 2001; Costa-Paiva et al., 2018; Martín-Durán et al., 
2013) (Figure 1). Protein sequences with their respective accession 
numbers from NCBI are presented in Table 1.

In order to infer homology between amino acid positions, data-
sets were compiled and aligned with MAFFT using the accurate “E-
INS-i" algorithm (Katoh & Standley, 2013). The completed alignment 
was trimmed using trimAl (Capella-Gutiérrez et al., 2009) with a 50% 
gap threshold to eliminate poorly aligned regions and used for all 
subsequent analyses (File S1–S2).

2.2  |  Phylogenetic reconstructions

The LG+C40+F+Γ4  mixture model, the best-fit model of protein 
evolution for the dataset, was selected using ModelFinder, a soft-
ware implemented in the IQ-TREE software (Kalyaanamoorthy et al., 
2017), which uses Akaike and Bayesian Information Criteria meth-
ods (AIC and BIC, respectively). IQ-TREE was also used to perform 
a maximum likelihood inference (Nguyen et al., 2015), with branch 

supports obtained by the ultrafast bootstrap approximation with 
1,000 replicates (Hoang et al., 2018). The tree was rooted using two 
amoebozoan homologue sequences (File S3).

2.3  |  Molecular dating

Molecular dating was performed in PhyloBayes (Lartillot & Philippe, 
2004) using a mixture model, and the phylogenetic tree was inferred 
by IQ-TREE. Estimation of divergence times was performed with the 
LG+C40 model using a gamma distribution (Γ4) of site-rate hetero-
geneity and a birth-death prior on divergence times (File S4). We 
inferred divergence times using both the log-normal autocorrelated 
relaxed clock (-ln) and the uncorrelated gamma relaxed clock (-ugam). 
MCMC (Markov Chain Monte Carlo) was run for 36,000 cycles and 
a burn-in period of 10%. Convergence of chains was accessed by 
running two independent MCMC runs. In both runs, ESS (effective 
sample sizes) values were higher than 200, after discarding the burn-
in period.

To calibrate divergence times, we first identified duplication 
and speciation nodes with the gene duplication wizard tool in 
MEGA 7 (Kumar et al., 2016). This was performed because cali-
bration information derived from fossil data provides information 
regarding the split times between biological lineages (i.e., specia-
tion events). So, divergences classified as speciation nodes that 
reflected robust biological clades and were free of duplication 
events were chosen for calibration. This search for gene duplica-
tions implemented the algorithm described in Zmasek and Eddy 
(2001) to infer gene duplications and speciation events for all 
internal nodes in the gene tree. The algorithm assumed that the 
gene tree and species tree are both properly rooted and biolog-
ically correct.

We used four calibration nodes according to best practice 
recommendations (Parham et al., 2012): Annelida, Arthropoda, 
Pancrustacea, and Lobopodia (Arthropoda  +  Onychophora). 
As PhyloBayes requires a root calibration, we assigned flexible 
boundaries to the divergence between amoebozoans and the 
ingroup, which followed the maximum dates for Eukarya MRCA 
(2,400  Ma) reported on the TimeTree database (Kumar et al., 
2017) and the minimum date was based on the oldest fossil re-
mains of acritarchs that can be ascribed with certainty to total-
group Eukaryota (1,619  Ma) from the Changcheng Formation, 
North China (Lamb et al., 2009). The fossil structures do not in-
dicate membership of any specific crown eukaryote clade, only to 
use these records to minimally constrain the timing of divergence 
between the Eukaryota and their archaebacterial sister lineage, 
Asgardarchaeota (Betts et al., 2018).

To estimate the tMRCA (time to the most recent common ances-
tor) of the Annelida, clade was assigned boundaries of 476 Ma and 
636 Ma (Benton et al., 2015). This constraint was based on the max-
imum age interpretation of the Lantian Biota (Yuan et al., 2011). The 
tMRCA of crown arthropods was calibrated with a minimum value of 
514 Ma and a maximum value of 636 Ma (Benton et al., 2015) based 
on the fossil Yicaris dianensis (Zhang et al., 2007). Thus, a minimum 
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TA B L E  1  List of taxa and genes analyzed with their respective 
NCBI accession numbers

Taxon
Gene 
identification Accession number

METAZOA

Porifera

Amphimedon queenslandica PPO XP_003390261.1

Kirkpatrickia variolosa Hc MF998096

Latrunculia apicalis Hc MF998097

Ctenophora

Coeloplana astericola Hc MF998091

Mnemiopsis leidyi Hc MF998101

Hc ML0447

Hc ML0463

Hc ML0910

Pleurobrachia bachei Hc MF998107

Hemichordata

Harrimaniidae gen sp. (from 
Iceland)

Hc MF998095

Saccoglossus kowalevski Hc ACY92544

Hc XP002734027.1

Chordata

Ciona intestinales Tyr XP002128449.1

Tyr XP002119145.1

Tyr NP001029009.1

Hc XP002119145

Hc XP002128449

Annelida

Paramphinome jeffreysii Hc MF998102

Pista macrolobata Hc MF998106

Streblosoma hartmanae Hc MF998109

Terebellides stroemii Hc MF998112

Thelepus crispus Hc MF998113

Onychophora

Epiperipatus sp. Hc Q8MPM7

Hc CAD12808.1

Arthropoda

Chelicerata

Androctonus australis Hc P80476

Aphonopelma sp. HcA P14750

HcB Q9NFH9

HcG Q9NFL4

HcF Q9NFL5

HcC Q9NFL6

HcD P02241

HcE P02242

Cupiennius salei Hc CAC44749

Hc CAC44750

Hc CAC44751

Hc CAC44752

Hc CAC44753

Hc CAC44755

Euphrynichus bacillifer HcA CCA94920.1

HcB CCA94921.1

Taxon
Gene 
identification Accession number

Limulus polyphemus HcA CAJ91099.1

HcB CAJ91100.1

Hc P04253

Mastigoproctus giganteus HcA CCA94927.1

HcB CCA94928.1

Myriapoda

Scutigera coleoptrata HcA CAC69246

HcB CAD55132

HcC CAD24086

HcD CAC69247

HcX CAD24085

Spirostreptus sp. Hc CAC33894

Pancrustacea

Anopheles gambiae Tyr XP307623.1

Tyr XP312089.2

Tyr XP315073.2

Tyr XP315074.1

Tyr XP315075.1

Tyr XP315076.1

Tyr XP315083.1

Tyr XP315084.2

Tyr XP316323.2

Apriona germani Hex AAM44045

Blaberus discoidalis Hex AAA74579

Bombyx mori PPO BAA08368

Tyr BAA08368.1

Tyr BAA08369.1

Callinectes sapidus Hc AAF64305

Cancer magister Hc AAA96966

Daphnia pulex Tyr GW183100.1

Drosophila melanogaster Hex1 NP476624

Hex1 NP511138

Hex1 NP523868

Hex2 NP524816

PPO NP476812

PPO NP524760

PPO NP610443

Tyr NP476812.1

Tyr NP524760.1

Tyr NP610443.1

Galleria mellonella PPO AAK64363

Homarus americanus Hc CAB75960

pHc CAB38042

pHc CAB38043

Homarus gammarus PPO Q70GP3

Manduca sexta PPO1 AAC05796

PPO2 AAC37243

Marsupenaeus japonicus PPO BAB83773

Metacarcinus magister pHc AAD09762

TA B L E  1  (Continued)

 (Continues)
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constraint was established on the age of the top of the Nangaoan 
Stage of the Qiandongian Series of the Cambrian of China, which has 
been dated to 514 Ma (Peng & Babcock, 2008; Peng et al., 2012) and 
a soft maximum constraint was based on the maximum age interpre-
tation of the Lantian Biota (Yuan et al., 2011).

For Pancrustacea, the aforementioned requirements were met 
twice (i.e., two speciation nodes that included only Pancrustacea se-
quences were recovered twice in the estimated phylogeny). Because 
of that, four speciation nodes were calibrated with uniform distri-
butions and lower/upper boundaries based on dos Reis et al. (2015). 
The time range used to calibrate the tMRCA (of pancrustaceans was 
between 514 and 531 Ma (dos Reis et al., 2015). Lastly, the tMRCA 
of lobopodians was a minimum of 528 Ma and a maximum of 636 Ma 
(Benton et al., 2015) based on Rusophycus trace fossils that are 
widely accepted to have been produced by arthropod-grade organ-
isms (Budd & Jensen, 2000). Rusophycus occurs well below the first 
animal body fossils in Cambrian sections around the world (Crimes & 
Jiang, 1986; MacNaughton & Narbonne, 1999; Weber & Zhu, 2003). 
A soft maximum constraint is based on the maximum age interpreta-
tion of the Lantian Biota (Yuan et al., 2011).

3  |  RESULTS & DISCUSSION

Molecular dating with PhyloBayes inferred the existence of a last 
common ancestral hemocyanin sequence with a median at 881 Ma, 
indicating an emergence of animals in the Tonian, prior to the ex-
treme glaciation events .

3.1  |  Non-arthropod hemocyanin and hemocyanin-
like proteins

Maximum likelihood and Bayesian inference analysis revealed two 
highly supported clades: 1) a clade formed by hemichordate, tuni-
cate, and sponge Hcs, Hc-like, and PO sequences; 2) a clade formed 
by ctenophore, annelid, and panarthropod sequences (Figure 2). The 
last common ancestor (LCA) of the first clade was originated at ap-
proximately 633 Ma (range 846–492 Ma; Tonian - Cambrian Period) 
(Figure 3), while the LCA of the second had its inferred ages centered 
at 737 Ma (831 – 679 Ma; Tonian - Cryogenian Period).

A monophyletic sponge clade of Hcs (Figure 2, dark yellow clade, 
bs = 100%) was the sister taxon to a deuterostome clade of PO and 
Hcs (Figure 2, purple clade, bs  =  100%). The deuterostome clade 
presented a clear distinction between hemichordate Hcs and tuni-
cate sequences, which included Hcs and PO sequences. The tMRCA 
estimates for sponges and deuterostome Hcs were 420 Ma (607–
252  Ma) and 362  Ma (541–215  Ma), respectively (Figure 3, dark 
yellow and purple clade, respectively). The temporal mismatch ob-
served for sponges and for deuterostomes may have occurred due 
to a limited representation of Hcs available for these specific lin-
eages. It is clear that sponges are much older than deuterostomes 
(dos Reis et al., 2015), evidence that include a recently discovered 
putative keratose sponge about 890 Ma (Turner, 2021).

Regarding the ctenophore, annelid, and panarthropod clade, our 
results demonstrated the presence of a monophyletic ctenophore Hc 
clade (Figure 2, dark blue, bs = 100%), a annelid Hc sequences (Figure 2, 
light yellow clade, bs >95%), and one composed by panarthropod se-
quences. The first clade contains ctenophore representatives exclu-
sively with an estimated time of the emergence of ctenophore Hcs 
about 558  Ma (633 – 430  Ma), which average is centered in the 
Ediacaran Period. As ctenophores are soft-bodied animals, they are 
sparsely represented in the rock record with mostly species restricted 
to Cambrian Burgess Shale-type deposits (Parry et al., 2021).

The date of the annelid/panarthropod split (a.k.a. the lophotro-
chozoan/ecdysozoan split) was estimated to have occurred about 
674  Ma (713–646  Ma) at the Cryogenian period, with the origin 
of annelid Hcs at approximately 574  Ma (619–498  Ma) during the 
Ediacaran Period (Figure 3). Although the dating estimates of early 
evolution of annelids remains obscure or controversial—mostly due to 
a discordance between molecular phylogenies and fossils (Chen et al., 
2020; Eibye-Jacobsen & Vinther, 2012; Parry et al., 2015)—our results 
agree with the oldest annelid fossil record, that is, a bristle worm that 
unambiguously belongs to crown annelids from the Canglangpu for-
mation, which was dated to the early Cambrian (Chen et al., 2020).

3.2  |  Panarthropod hemocyanin superfamily

Hcs, pHcs, PPOs, and HEXs together form a functionally diverse pro-
tein superfamily, where most sequences and core structural elements 
are strikingly conserved. These core elements allow tracing the evo-
lutionary history of this protein superfamily (Burmester, 2001). The 

Taxon
Gene 
identification Accession number

Neobellieria bullata PPO AAD45526

PPO AAD45527

Pacifastacus leniusculus Hc AAM81357

PPO CAA58471

Palinurus vulgaris Hc CAC69243

Hc CAC69244

Hc CAC69245

Panaeus vannamei Hc CAA57880

Penaeus monodon PPO AAD45201

Penaeus semisulcatus PPO AAM77690

Periplaneta americana Hex AAB09629

Plodia interpunctella Hex AAK71136

Schistocerca americana Hc AAC16760

Spodoptera litura HexA CAB55603

HexB CAB55602

Tenebrio molitor Hex AAK77560

PPO BAA75470

Tribolium castaneum Tyr NP001034493.1

TA B L E  1  (Continued)
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emergence of a panarthropod Hc superfamily was dated to 633 Ma 
(636–625  Ma) during the Ediacaran Period (Figure 3)—suggesting 
that this blood pigment was present in the most recent common an-
cestor of extant arthropods (Burmester, 2001, 2015; van Holde & 
Miller, 1995; Markl & Decker, 1992). Our findings corroborate previ-
ous inferences about arthropod Hc origins, around 700 – 600 Ma, 
based also on molecular dating (Burmester, 2001, 2002).

Within the panarthropod clade, we recovered an onychophoran 
Hc clade (Figure 2, red clade, bs =100%) and a clade formed by ar-
thropod sequences with two main gene lineages. One of the lineages 
comprised pancrustacean, chelicerate, and myriapod Hcs Hc, pHcs, 
and HEXs (Figure 2, gray, orange, light green, and light blue clades), 
while the other is composed of pancrustacean POs (Figure 2, pink 
clade). Divergence between these two gene lineages was dated at 
approximately 621 (630 – 609  Ma), thereby indicating a likely or-
igin during the Ediacaran Period (Figure 3). The origin of the well-
supported clade formed by pancrustacean POs (Figure 2, pink clade, 
bs = 100%) was centered at 586 Ma (604–567 Ma) in the Ediacaran 
Period (Figure 3, pink clade).

Within the monophyletic clade composed by pancrustacean, 
chelicerate, and myriapod Hcs, pHcs and HEX, significant dif-
ferentiation was recovered between chelicerate and myriapod 
Hcs (Figure 2, gray and orange, bs  >  95%) and pancrustacean, 
Hcs, pHcs, and HEXs (Figure 2, light blue and light green clade, 
bs = 100%). The well-supported clade formed by chelicerate and 
myriapods Hcs was divided into two maximally supported clades: 
(1) chelicerate Hc sequences (Figure 2, gray clade, bs =100%) and 
(2) myriapod Hc sequences (Figure 2, orange clade, bs = 100%). 
The date of the pancrustacean Hc/myriapod and chelicerate Hc 
split was estimated to have occurred about 612 Ma (624–599 Ma), 
in the Ediacaran Period. This estimate agrees with a previous esti-
mate for Hcs that dated it around 600 Ma (Burmester, 2001) and 
corroborates previous studies that suggest this divergence hap-
pened before the radiation of arthropod subphyla, which occurred 
no later than in the Cambrian period (Burmester, 2002; Conway-
Morris, 1993; Gu, 1998; Valentine et al., 1999). Nevertheless, new 
evidence suggests a more recent slip between pancrustaceans 
and myriapods (Lozano-Fernandez et al., 2016). Our time estimate 

F I G U R E  1  Bioinformatics pipeline. 
Rounded rectangles represent software or 
scripts and ovals represent input/output 
files. The dataset was formed using 
108 previously published hemocyanin 
superfamily sequences distributed 
as: 60 hemocyanin sequences; 34 
phenoloxidases; 11 hexamerins; 3 pseudo-
hemocyanin
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for the myriapod/chelicerate Hc divergence was dated at 584 Ma 
(604–559 Ma) (Figure 3, orange and gray clades).

Pancrustacean, Hcs, pHcs, and HEXs clade slip in two highly sup-
ported clades: (1) pancrustacea Hcs and pHcs sequences (Figure 2; light 
green clade, bs >95%) and (2) insect HEXs (Figure 2, light blue clade, 
bs =100%). Our results suggested an origin for both insect HEXs and 
pancrustacean Hcs and pHcs during the Cambrian Period at 516 Ma 
(524–514  Ma) and 511 (530 – 485  Ma), respectively (Figure 3). Our 
results corroborated previous findings by Burmester (2002), showing a 

close relationship between crustacean and insect Hc genes. The phy-
logenetic position of insect HEXs suggests that this copper-less stor-
age proteins evolved within the insect stem lineage around 516 Ma 
ago, contradicting previous findings, which proposed an origin around 
400 Ma (Burmester, 2002). Hexapods are derived from aquatic crus-
taceans, yet the timing of this event remains controversial (Burmester, 
2015). The first terrestrial hexapod fossils were dated from the early 
Devonian period approximately 400 Ma (Kenrick et al., 2012; Misof 
et al., 2014), suggesting a Silurian origin around 450 Ma.

F I G U R E  2  ML tree for the hemocyanin gene superfamily rooted with two amoebozoan Hc sequences. (A) Purple clade is formed by 
deuterostome Hcs and POs; (B) Dark yellow clade is sponge Hc-like; (C) Dark blue clade is ctenophore Hc-like; (D) Light yellow clade is 
formed by annelid Hc-like; (E) Red clade is onychophoran Hcs; (F) Pink clade is panarthropod phenoloxidases; (G) Light blue clade is hexapod 
hexamerins; (H) Light green clade is pancrustacea Hcs and pHcs; (I) Orange clade is myriapod Hcs; (J) Gray clade is chelicerate Hcs; (K) 
Colorless clade is the outgroup. Doted circles and arrows indicate gene duplication events. The number after the protein abbreviation in 
each sequence indicates the GenBank accession number for each gene. Only bootstrap support values over 80% are indicated
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3.3  |  Emergence of metazoan hemocyanins

A much-debated topic in geobiology refers to the influence of at-
mospheric oxygenation on Earth and the origin and diversification 
of animal lineages. All extant animals require oxygen for at least a 
fraction of their life cycle, suggesting that life cycle completion in 
total anoxia is either incompatible with metazoan ecology and physi-
ology, or an extremely rare and derived metazoan trait (Cole et al., 
2020). However, some extant animals can tolerate, and live in, low-
oxygen environments (Sperling, Halverson, et al., 2013; Sperling 
et al., 2015). Although oxygen requirements of early animals are not 
fully understood, there are multiple theoretical estimates of oxygen 
consumption in animals, which depend primarily on the organism's 
length, width, and possession of a vascular system with oxygen-
carrying proteins, such as, hemocyanins (Mills et al., 2014; Sperling, 
Halverson, et al., 2013).

The estimated age for the origin of animal Hc superfamily was 
approximately 881 Ma (1117–756 Ma) in the Tonian Period during 

the Neoproterozoic Era (Figure 3). The first members of this family 
were likely to have emerged before metazoans, as there are incom-
plete Hc homologues in amoebozoans—only two of the three pro-
tein domains are present (Martín-Durán et al., 2013). In animals, the 
first Hcs were likely derived from a phenoloxidase-like enzyme, as 
previously proposed by Burmester (2002) for the arthropod stem-
line. Phenoloxidases play an important role in the initial stages of 
the melanization process, where they catalyze the hydroxylation of 
monophenols (e.g., L-tyrosine) to ortho-diphenols and the oxidation 
of ortho-diphenols to ortho-quinones, which eventually go on to 
form melanins (Burmester, 2002). Phenoloxidases and melanins act 
in the front line of innate immunity of many aquatic and terrestrial 
invertebrates, contribute to clot sealing during wound healing, and 
participate in the sclerotization of the arthropod cuticle (Ashida & 
Yoshida, 1988; Àspan & Söderhäll, 1991; Söderhäll & Cerenius, 1998; 
Whitten & Coates, 2017). Thus, it is likely that the emergence of POs 
was directly related to a detoxification or defense response in early 
animals in the Neoproterozoic. In arthropods, it is conceivable that 

F I G U R E  3  Hemocyanin gene superfamily tree with time estimates. (A) Purple clade is formed by deuterostome Hcs and POs; (B) 
Orange clade is sponge Hc-like; (C) Dark blue clade is ctenophore Hc-like; (D) Yellow clade is formed by annelid Hc-like; (E) Red clade is 
onychophoran Hcs; (F) Dark green clade is myriapod Hcs; (G) Gray clade is chelicerate Hcs; (H) Pink clade is panarthropod phenoloxidases; 
(I) Light green clade is pancrustacean Hcs and pHcs; (J) Light blue clade is hexapod hexamerins sequences. The number after the protein 
abbreviation in each sequence indicates the GenBank accession number for each gene. Average node ages are plotted. C, Cambrian; O, 
Ordovician; S, Silurian; D, Devonian; Carb, Carboniferous, P, Permian; Tr, Triassic; J, Jurassic; K, Cretaceous; Pg, Paleogene; Ng, Neogene; Cz, 
Cenozoic; Ma, Million years ago. Glaciation events and atmospheric oxygen levels estimates are indicated
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this enzyme was also linked to the evolution of hardened exoskel-
etons in the late Precambrian period (Burmester, 2002). Moreover, 
the high alkalinity of seawater at the end of Ediacaran (Xiao et al., 
2016) could have triggered biomineralization (Cui et al., 2016, 2019; 
Wood et al., 2017).

The emergence of the Hc superfamily during the 
Neoproterozoic Era corroborates modern molecular dating of 
an age between 1,000 and 650  Ma for the origin of metazo-
ans (Dohrmann & Wörheide, 2017; Erwin et al., 2011; Lozano-
Fernandez et al., 2017; Peterson et al., 2004; Qun et al., 2007; 
dos Reis et al., 2015). In addition, these results suggest that early-
branching animals may have already possessed blood pigments 
(Hc-like), which may have enhanced their respiratory capacity in 
a hypoxic environment at that time. In animals without circulatory 
systems, Hcs might act in other cellular processes beyond oxygen 
loading. Early Hc and Hc-like proteins may have also acted in the 
transport of hormones, detoxification of heavy metals, and innate 
immunity (Coates & Costa-Paiva, 2020; Coates et al., 2011, 2013; 
Coates & Nairn, 2014; Coates & Talbot, 2018).

The Neoproterozoic Era (1000–541  Ma) was characterized by 
significant modifications on the planet dynamics, including mas-
sive lithosphere alteration (Trindade et al., 2006); extreme glacia-
tion events (Rooney et al., 2015; Spence et al., 2016); and the rise 
of atmospheric oxygen levels (Sperling et al., 2015; Tostevin & Mills, 
2020). At least three great Neoproterozoic glaciations occurred, the 
extreme Sturtian (720–660  Ma) and Marinoan (650–636  Ma) ice 
ages and the more restricted, Gaskiers glaciation (582 Ma) (Cordani 
et al., 2020; Rooney et al., 2015; Spence et al., 2016). Our results in-
dicate that the emergence of animal Hcs occurred prior to these ex-
treme glaciation events that could suggest the presence of animals 
by this time. This assumption is corroborated by molecular estimates 
(Dohrmann & Wörheide, 2017; dos Reis et al., 2015), the presence of 
a putative sponge fossil from 890 Ma (Turner, 2021) and diagnostic 
of pre-Marinoan (<650–635  Ma) demosponges (Love et al., 2009; 
Love & Summons, 2015), and possible cryostane demosponges 
biomarkers indigenous to bitumens and oils compatible with pre-
Sturtian metazoans (<800–740 Ma) (Brocks et al., 2016). However, 
new evidence calls into question the veracity of biomarkers from 
the first metazoans, drawing attention to the fact that they may 
be algal biomarkers, which are common during the Neoproterozoic 
(Bobrovskiy et al., 2021; van Maldegem et al., 2021).

During extreme glaciations, animals could live on the underside 
of the ice or on the sediment under the ice sheet, although a variety 
of biotic refugia during the Sturtian and Marinoan have been iden-
tified, including marine and terrestrial hydrothermal vents (Costas 
et al., 2008; Fraser et al., 2014), sea-ice brine channels within ice 
grounding-line crack systems (Thomas & Dieckmann, 2002), and 
cryoconite (Christner et al., 2003; Hoffman, 2016). As suggested by 
the date of the arthropod Hcs origin calculated here (around 584 Ma), 
arthropods may have evolved immediately before Gaskiers glacia-
tion (Figure 3). This result is consistent with the evolution of novel 
and more metabolically demanding traits, such as sclerotization and 

higher motility during the emergence of more complex food webs 
(Sperling, Frieder, et al., 2013; Wood et al., 2019).

Regarding oxygenation events on Earth, as early as 3.0 Gya ago, 
a dynamic rising and falling oxygen levels in the ocean and atmo-
sphere took place, superimposed on a first-order trend from gen-
erally low to intermediate to high concentrations over a period of 
perhaps two and half billion years (Lyons et al, 2014). A recent re-
view of atmospheric oxygen and marine redox state(s) through the 
Neoproterozoic–Palaeozoic demonstrated that oxygen fluctuated 
by about an order of magnitude, suggesting that instead of a sin-
gle Neoproterozoic oxygenation event, there were multiple ocean 
oxygenation events during this period (Tostevin & Mills, 2020). 
Interestingly, our results suggest a pattern of Hc diversification 
and expansion that could be related to these multiple oxygenation 
events. More studies tracing the co-correlation of these multiple ox-
ygenation events and genomic expansion of Hc would offer further 
insight into the effects, and selective pressure, of oxygen-binding 
proteins in early metazoans when oxygen availability was a key lim-
iting factor.

4  |  CONCLUSIONS

Our results suggest major evolutionary steps occurred before the 
extreme glacial events of the Neoproterozoic as marked by the 
emergence of the metazoan Hc superfamily at around 1117–756 Ma 
(average 881 Ma). They imply that crown-group animals were likely 
to possess blood pigments (Hc-like), which may have enhanced their 
respiratory capacity under the predicted low-oxygen conditions of 
that time. Moreover, Hcs might also have worked as a means for 
the transport of hormones, detoxification of heavy metals, and in-
nate immunity pathways in animals without circulatory systems. 
Obtaining functional and experimental data on Hcs at different 
oxygen levels is still needed to evaluate the significance of their 
widespread occurrence in metazoans in the context of the meta-
zoan dawn.
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