
Universidade de São Paulo

Instituto de Astronomia, Geof́ısica e Ciências Atmosféricas

Departamento de Astronomia

Roberta Duarte

Black Hole Weather Forecasting

with Deep Learning

São Paulo

2020

Roberta Duarte

Black Hole Weather Forecasting

with Deep Learning

Dissertation presented to the Astronomy de-

partment of the Institute of Astronomy, Ge-

ophysics and Atmospheric Sciences of the Uni-

versity of São Paulo as partial requisite to ob-

tain the Master in Sciences title.

Concentration Area: Astronomy

Advisor: Prof. Dr. Rodrigo Nemmen

Versão Corrigida. O original encontra-se dis-

ponvel na Unidade.

São Paulo

2020

To my parents, Roberto e Maria

Acknowledgements

I had to start a new life to start this project since I moved from São Carlos to São

Paulo. Since this was a significant impact in my life, I had support from some people that

helped me and stayed by my side. This project is the result of hard work, but it also has

a behind the scenes history. Here, I want to acknowledge and thank the important people.

First, I want to thank the Black Hole Group. My advisor Rodrigo Nemmen and all the

members, Fabio, Gustavo, Ivan, Artur, Raniere, and Roderik. They trusted me, supported

me, and gave me fantastic advice during my research. The collaborator of this project,

João Paulo, was also a big part of this, he supported this project not only with hardware

but also with advice. So thank you.

I want to thank my parents, Roberto and Maria, who supported me in every way

possible, and my dogs, Mila and Kika, that are part of my family. I had moral, mental,

and financial support from them.

I also want to give a huge thanks to Fabio Cafardo since he became my best friend in

the last two years. He was my first friend in São Paulo. Because of him, I felt at home

again. This work was possible also thanks to Erik, Mirian, Rita, Julia, André F., Geisa,

Humberto, and Laerte since they helped me when my mental health wasn’t in the right

place and all of them became my dearest friends. I can’t thank them enough because

they were my most significant support. This fantastic journey was also due to Amanda,

Geraldo, Catarina, Danielle, Ana Júlia, André V., Fernanda, Stephane, Rafael, Loreany,

Thayse, so thank you all of you.

We gratefully acknowledge the support of NVIDIA Corporation with the donation of

Quadro GP100 and Quadro P6000 GPUs used for this research.

This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de

Nı́vel Superior) through PROEX (Programa de Excelência Acadêmica) program. A huge

thanks to CAPES because without its support this work wouldn’t be possible.

“I’m falling, so I’m taking my time on my ride”

Tyler Joseph

“It seems like the pressure that could have crushed us made us into diamonds instead.

And what didn’t kill us actually did make us stronger.”

Taylor Swift accepting Woman of the Decade Award

Resumo

Métodos tradicionais de estudar o comportamento de um disco de acreção ao redor

de um buraco negro são compostos principalmente de simulações numéricas computacio-

nalmente caras. Esse custo faz com que as simulações numéricas sejam restringidas por

dimensionalidade ou limitações nas equações e, geralmente, leva muito tempo para simu-

lar. A f́ısica de buracos negros precisa urgentemente de uma nova ferramenta capaz de

obter resultados mais rápidos. Queremos propor o uso do aprendizado profundo como uma

posśıvel nova ferramenta. O objetivo é desenvolver um método de aprendizado profundo

capaz de fazer previsões de estados ao redor de buracos negros. Propomos um modelo que

pode reproduzir os resultados de uma simulação com um erro abaixo de < 3% e ao mesmo

tempo acelerar o processo de obtenção dos resultados por um fator de 104.5.

Abstract

Traditional methods of studying accretion flows onto black holes mainly consist of

computationally expensive numerical simulations. This often imposes severe limitations

to the dimensionality, simulation times, and resolution. Computational astrophysics is in

urgent need of new tools to accelerate the calculations, thereby leading to faster results.

We propose a deep learning method to make black hole “weather forecasting”: a data-

driven approach for solving the chaotic dynamics of BH accretion flows. Our model can

reproduce the results of a hydrodynamic simulation with an error < 3% and at the same

time speeding-up the calculations by a factor of 104.5, thus reducing the simulation time.

List of Figures

1.1 The scheme shows the machine learning fields. 28

1.2 A deep neural network architecture: each node is called a neuron. They are

composed of the input layer, the hidden layers, and output layer. 29

1.3 Convolutional neural network architectures are composed of the input block,

the hidden blocks, and the output block. Filters make the convolutional

operations. 30

1.4 Figure extracted from Pathak et al. (2018) 32

2.1 A flowchart of how the data flow from the numerical simulations until the

training part. 35

2.2 The plots from Almeida and Nemmen (2020) show the different angular

momentum profiles. 37

2.3 The grid of the simulations. 38

2.4 Examples of the density plots from the simulations PL0SS3, PNSS3, and

PNST1. 40

2.5 Plots of log(ρ) from PNSS3 before the crop. 41

2.6 The block is a 3D array with spatial and temporal information. 42

2.7 The input is a block with size (bs, 256, 192, tn : tn+4) and the output is the

block with size with (1, 256, 192, tn+5 : tn+10). 43

3.1 We show a shallow NN and a DNN. 45

3.2 We show a scheme with three neurons. Two neurons in the layer l and one

neuron in the layer l + 1. 47

3.3 The function C(w) in relation to w. The green curve is the curve of C(w). . 49

3.4 A CNN architecture composed of convolutions. 52

3.5 The picture is a (H ×W) matrix and we can separate the 3 channels RGB

in 3 matrices. 52

3.6 Example of how a MaxPooling layer acts. 53

3.7 Example of how an UpSampling layer acts. 54

3.8 Illustration from Podareanu et al. (2019). 54

3.9 The shape of the input and the output of a convolution. 55

3.10 The scheme of the architecture U-Net based on Ronneberger et al. (2015). 57

3.11 The inference scheme with an iteration loop. 60

3.12 The inference scheme directly from simulation. 61

3.13 The pipeline of the cGAN model. 62

4.1 The regions of the loss function. 66

4.2 Two kinds of forecasting: direct and iterative. 66

4.3 The prediction of the gravitational time – t = 611529 GM/c3 – compared

with the respective target. 67

4.4 The MAPE metric between the prediction respective to t = 611529 GM/c3

and other frames from the dataset of the same simulation. 68

4.5 The mean density as a function of Θ and the function of R. 68

4.6 The left panel shows the mean absolute percentage error (MAPE) between

the prediction and the ground truth. The right panel shows the difference

of the logarithm of the ground truth and prediction (∆log(ρ)). 69

4.7 The MAPE between the prediction and its respective ground truth. 69

4.8 The comparison between the mass in the target and the mass in the prediction. 70

4.9 The density state for three distinct times. 71

4.10 The density state for three distinct times. 72

4.11 The mass in two regions: R < 50Rs and R > 50Rs. 72

4.12 The MAE between the predictions and the respective ground truth. 73

4.13 This is the 10th step after the training stop for all simulations. 75

4.14 The continuation of 4.13 plot. 76

4.15 The differences for 10, 25 and 50 frames in the future for PL0SS3 and PNST1. 77

4.16 The analysis of PL0SS3 and PNST1. 77

4.17 The predictions of the PL0SS3 using the iterative scheme. 78

4.18 The mass of the target vs the mass of the predictions. 79

4.19 The mean of density in θ (left panel) and R (right panel) in the function of

the time. 79

4.20 The results are from simulations PL0ST1, PL2SS3, PNSS3, PNST01, and

PNST1 from GAN model. 80

4.21 The log(M) for PNSS3 and PNST1 predictions from the GAN. 81

4.22 The PNSS3 density mean in θ and R in the function of the time for the cGAN. 81

4.23 The PNST1 density mean in θ and R in the function of the time for the

cGAN. 82

4.24 Duration of regular simulation and DL model. 83

4.25 Processing time comparison the simulations in simulation and in DL model. 84

4.26 Duration of all simulations and DL model. 84

4.27 Processing time the simulations in simulation and in DL model for all simu-

lations. 85

List of Tables

2.1 The table shows all simulations performed by Almeida and Nemmen (2020). 38

4.1 The simulations with the parameters: angular momentum profile, viscosity

profile, and the α-parameter. 73

4.2 The resources we use in our works are listed. 82

A.1 The split of the dataset. 105

A.2 Hyperparameters found by the grid search method. 105

A.3 Hyperparameters found by the grid search method. 106

Contents

1. Introduction . 23

1.1 Accretion . 25

1.2 Numerical Simulations . 26

1.3 Deep Learning . 27

1.4 Related Work . 31

1.5 This Work . 32

2. Astrophysical Dataset . 34

2.1 Numerical Simulations . 35

2.2 Data preparation . 39

2.3 Training, Validation and Testing sets . 42

3. Methods . 44

3.1 Neural Networks . 44

3.2 Convolutional Neural Networks . 51

3.3 Architecture . 57

3.4 Hyperparameters . 58

3.5 Inference . 60

3.6 GANs . 61

3.7 Analysis . 62

3.8 Procedure . 64

4. Results . 65

4.1 One simulation . 66

20

4.2 All simulations . 72

4.3 GANs . 77

4.4 Speed-Up . 81

5. Discussion . 86

5.1 One simulation . 86

5.2 All simulations . 87

5.3 cGANs . 88

6. Conclusions . 90

6.1 Future Perspectives . 92

Bibliography . 94

Appendix 103

A. Details . 105

List Of Abbreviations

• AGNs - Active Galaxy Nuclei

• BHs - Black Holes

• CNNs - Convolutional Neural Networks

• DL - Deep Learning

• GANs - Generative Adversarial Networks

• GRMHD - General Relativistic Magneto-Hydrodynamical

• HD - Hydrodynamical

• LLAGNs - Low-luminosity Active Galaxy Nuclei

• LSTM - long short-term memory

• MAE - mean absolute error

• MHD - Magneto-Hydrodynamical

• ML - Machine Learning

• MLP - Multi-Layer Perceptron

• RIAFs - Radiatively Inefficient Accretion Flows

• RNN - recurrent neural network

• SMAPE - symmetric mean absolute percentage error

• SMBHs - Supermassive Black Holes

22

Chapter 1

Introduction

The objects in the Universe with a large gravitational field, a singularity in its cen-

ter, and surrounded by an event horizon are called black holes (BHs). They first were

mathematical entities discovered by Karl Schwarzschild while solving Einstein equations

for uncharged spherically-symmetric non-rotating configurations. Only in the early 60s,

the first evidence of the existence of a BH was found by Maarten Schmidt when he first

observed quasars (Schmidt, 1963). The term “black hole” to name those objects was

introduced by Wheeler in 1964 (Misner, Thorne e Wheeler, 1973). In parallel, the theory

behind BHs was turning into a hot topic in Physics: Kerr derived the solution of Einstein’s

equations for a rotating BH in 1963 (Kerr, 1963), Penrose proposed the Penrose-process as

a way to extract energy from a rotating BH (Penrose, 1969) and later it was used as one

of the processes to explain jets from rotating BHs (Blandford and Znajek, 1977). Besides,

more evidence of BHs was found, e.g, Bolton (1972); Wagner et al. (1990); Schodel et al.

(2002). Recently, gravitational waves generated by the merge of two BHs were detected

(Abbott et al., 2016) as well as the first picture of a BH captured by the EHT (Event

Horizon Telescope Collaboration, 2019). Observations and theoretical discoveries about

BHs make it possible to understand better gravity itself and how those objects are related

to their environment.

The parameters that describe a BH are mass, spin, and charge according to the no-hair

theorem (Misner et al., 1973). Since the charge is not relevant in astrophysical BHs, they

are classified depending on their spin, Schwarzschild BHs (non-spinning) and Kerr BHs

(spinning). Also, they can be classified in terms of their mass as follows: BHs with a

mass M > 105M� are called supermassive black holes (SMBHs) - those are found in the

center of galaxies (Ferrarese and Ford, 2005) and BHs with a mass 10M� < M < 103M�

24 Chapter 1. Introduction

are called stellar BHs - found in X-ray binaries. Their mass relates to their size by the

Schwarzschild radius, Rs = 2GM/c2, where G is the gravitational constant, c is the light

speed, and M is the mass. The Schwarzschild radius gives us the size of the event horizon.

When gas comes close to a BH, it creates a disk-like structure around the BH. Due to the

conservation of angular momentum, the matter would rotate indefinitely around the event

horizon unless it loses angular momentum. The dynamical friction due to magnetic fields

(Balbus, 2003) transports momentum outwards in the disc. The angular momentum loss

causes the matter to spiral inwards, adding mass to the BH thereby leading to accretion.

The ensuing dynamical friction will convert part of the mechanical energy into light. This

eletromagnetic emission is observed in X-ray binaries, gamma-ray bursts, and active galaxy

nuclei (AGNs) (Meier, 2012; Gilfanov, 2010).

The accretion flow behavior will depend on how this energy is dissipated (Abramowicz

and Fragile, 2013), which is in turn related to the accretion rate Ṁ . For low values of Ṁ ,

a small fraction of the energy is radiated, and the accretion disk starts to heat, becoming

hot, geometrically thick, and optically thin, meaning a medium with low density leading to

a radiatively inefficient accretion flow (RIAF) (Yuan and Narayan, 2014). Low luminosity

AGNs (LLAGNs) are the result of SMBHs accreting in RIAF mode. SMBHs accreting at

low Ṁ are dominant objects in the local Universe, including Sagittarius A* (Sgr A*) - the

4× 106M� SMBH in the center of the Milky Way (Yuan et al., 2003). It is indispensable

to study those SMBHs to understand how they affect the environment around it and to

understand our Local Group, including our Galaxy.

To understand accretion physics and to model the dynamics of the system, it is ne-

cessary to use numerical simulations. Numerical simulations of BH accretion started to

make progress in the late 90s. The first simulations were hydrodynamical and Newto-

nian (Stone et al., 1999). Proga and Begelman (2003) introduced the pseudo-Newtonian

potential but still without viscosity. Numerical simulations adding viscosity, cooling ef-

fects, and magnetic fields were published (Stone and Pringle, 2001; Turner et al., 2003;

Proga and Begelman, 2003) increasing the complexity of those systems. Nowadays, gene-

ral relativistic magneto-hydrodynamical (GRMHD) simulations are the primary numerical

tools to understand accretion physics near BHs (McKinney and Narayan, 2007; McKinney

and Gammie, 2004; McKinney et al., 2012) and to explain jet production from Kerr BHs

(Tchekhovskoy and McKinney, 2012).

Section 1.1. Accretion 25

While numerical simulations have been the primary tool to investigate the accretion

physics of BHs, they are computationally expensive and may take a long wall time to run.

For example, a 2D hydrodynamical simulation with 400× 200 takes seven days running in

400 CPU-cores. For more realistic descriptions, the models become even more demanding,

i.e., they require more processors and longer times. This demand is significant when we

go from 2D simulations to 3D simulations since we are adding another dimension - the

curse of dimensionality (Bellman, 1966). New methods are desirable to accelerate the

computations involved while maintaining a good trade-off between speed and precision.

Deep learning (DL) shows up as a promising field in Astronomy in recent years (Huertas-

Company et al., 2019; Fabbro et al., 2017; Shallue and Vanderburg, 2018). The success of

DL inside Astronomy is due to the massive availability of data (Siemiginowska et al., 2019).

DL is already being used to analyze data (Nieto et al., 2019) and to extract parameters

from observations (Ribli et al., 2018). Also, DL is speeding-up analysis in fields such

as Cosmology when simulating those complex systems is computationally expensive. At

the same time, DL methods are finding applications in other fields such as fluid mechanics

(King et al., 2018; Mohan et al., 2019; Mohan et al., 2019) and weather forecasting (Gensler

et al., 2016; Grover et al., 2015). The progress of DL in such fields is showing the capacity

of deep neural networks to deal with complex and non-linear systems.

1.1 Accretion

The angular momentum transport responsible for making the inner parts of the accre-

tion flow move towards the BH is due to magnetic stresses. When a magnetic line connects

two elements of the fluids with two different rotational velocities, the line’s stress leads to

momentum transport. Since the inner element loses momentum, it releases energy, so these

stresses are responsible for converting some of the gravitational potential energy to ther-

mal energy. This phenomenon is called magneto-rotational instability (MRI) presented by

Balbus (2003). A fraction of the thermal energy is radiated away. What remains heats up

the gas.

The behavior of the accretion flow is dictated by the fraction ε of the rest-mass energy

associated with accreted mass, Ṁc2, which is converted to radiation. The ε in Equation

1.1 represents the radiative efficiency, where L is the luminosity, and Ṁ is the accretion

26 Chapter 1. Introduction

rate:

ε =
L

Ṁc2
. (1.1)

Ṁ is usually expressed in terms of Eddington accretion rate ṀEDD (ṀEDD is the

accretion rate if the luminosity is the Eddington luminosity). In this sense, Ṁ will be

a fraction of ṀEDD, Ṁ = λṀEDD. When 0.01 < λ < 1, the disk is geometrically thin

and optically thick, radiating like a black body, and attaining temperatures in the range

104−107K. If Ṁ & ṀEDD (λ & 1), the disk is optically thick, but in this case the radiation

gets trapped and it is advected onto the BH. This model is called a slim disk. For cases

where λ < 0.01, the disk becomes geometrically thick and optically thin, the energy is not

radiated, so it heats the fluid to higher temperatures T ∼ 1012K (Frank et al., 2002).

The interest in studying different values of Ṁ for SMBHs connects with the different

types of AGNs. Thin disks are relevant for Seyfert 1s and quasars. RIAFs can model

LLAGNs and most SMBHs in nearby galaxies. The closest example of a SMBH accreting

in RIAF mode is Sagittarius A* (Sgr A*) (Beckman, 1993). Also, SMBHs accreting at

low Ṁ may have an important role when it comes to feedback in the form of winds and

jets. That feedback may explain the quenching star formation in the center of quiescent

galaxies (Roy et al., 2018).

1.2 Numerical Simulations

Analytical solutions to the fluid equations that describe the accretion flow are rarely

possible due to the complexity of those systems. The complexity of those systems can be

due to turbulence driven by MRI. Numerical simulations have been the best tool to solve

fluid dynamics and thereby advance our understanding of BH accretion flows.

The hydrodynamical (HD) regime is well established since a considerable number of

papers has been published on this topic, e.g., Stone et al. (1999); Igumenshchev et al.

(2000); Fragile and Anninos (2005); De Villiers and Hawley (2002); Almeida and Nemmen

(2020). In HD simulations some viscosity acts as the cause of stress and angular momentum

transport.

The next step is naturally the addition of magnetic fields in the numerical simulations.

Magnetic fields have an essential role in removing angular momentum via the MRI as

Section 1.3. Deep Learning 27

explained before (Balbus and Hawley, 1991; Balbus, 2003). The impact of different mag-

netic fields configurations on the accretion flow and outflows is an active area of numerical

astrophysics.

BHs are general relativistic objects, so to explain how those objects affect its immediate

environment, it is essential to use general relativity. GRMHD simulations are especially

relevant for investigating the near horizon physics (Porth et al., 2019) and the production

of relativistic jets (Moscibrodzka, M. et al., 2016).

To properly study the region close to a BH from a realistic point of view, GRMHD is

required. When it comes to studying winds from an accretion flow far away from the BH,

it is also useful to use of HD simulations with pseudo-Newtonian potential. In this work,

we use simulations from Almeida and Nemmen (2020) who performed HD simulations of

large tori in order to investigate winds and feedbacks in LLAGNs.

Numerical simulations have some shortcomings. One of them is the large amount

of time needed to numerically solve the equations. The longest hydrodynamical RIAF

simulation run by Almeida and Nemmen (2020) required ∼ 7 days running in 200 CPU

cores. This motivates the investigation of alternatives to explicit solvers of the underlying

conservation equations. Here, we address the use of deep learning techniques, which could

dramatically accelerate (M)HD numerical simulations while keeping a reasonable accuracy.

1.3 Deep Learning

Machine learning (ML) is a field that uses data to create a mathematical model able

to fit new data. The ML models are dynamical and can adapt when they are fed with

data. There are essentially two types of ML models: supervised and unsupervised learning.

Supervised learning is when the model has access to information that we already know

about the data. More precisely, we give the model an input (e.g., a picture), and we also

give the outputs (e.g., the classification of the picture as a cat). The goal in supervised

learning is that the model learns from data and then applies this knowledge in new unseen

data. On the other hand, unsupervised learning is when we give just the inputs or the

features to the model, and the model has to figure on its own the dependencies and

underlying structures in the data. Reinforcement learning has also been included under the

umbrella of ML. Reinforcement learning uses input and outputs to learn as a supervised

28 Chapter 1. Introduction

learning method but also uses new tactics to perform the goal (Salian, 2018). In Figure

1.1, we show the scheme representing ML and its fields.

Figure 1.1: The scheme shows the machine learning fields.

Unsupervised learning is a useful tool to find morphology, clustering, and identificati-

ons (Goldsmith, 2006; Jain et al., 2008). Some methods, such as K-means (Lloyd, 1982),

dimensionality reduction (Kirby, 2000), and clustering, are examples of unsupervised le-

arning methods. Reinforcement learning is a method that is useful to find solutions for a

problem by itself. The most famous reinforcement learning use was DeepMind’s AlphaGo

(Silver et al., 2016). (Silver et al., 2016) used a combination of reinforcement learning with

supervised learning, feeding the model with solutions learned by trial and error.

Usually, supervised learning may be associated with DL. DL is a field of ML that uses

deep neural networks. The first neural network was a single neuron called the perceptron

(Rosenblatt, 1960). Then neural networks started to evolve into multi-layer perceptron

(MLP) (Murtagh, 1991). A MLP is composed of neurons and layers. Usually, a MLP with

one-layer is called a shallow neural network, and with more than one-layer is called deep

Section 1.3. Deep Learning 29

neural networks (Figure 1.2). The output layer contains the target value, and then an

error function calculates the difference between the model prediction and the target. This

error function is called the loss function. The loss function is a function that measures the

errors for the inputs and weights. We train the model to minimize the loss function, i.e.,

minimize the error between the prediction and the target. The weights are updated, and

the goal is to find the minimum error.

Figure 1.2: A deep neural network architecture: each node is called neuron. The first layer

(the input layer) is the layer that receives the data. The hidden layers are composed of

neurons that compute non-linear functions based on what they received. Hidden layers are

useful for extracting information and they learn features. The output layer is the layer that

will compare the prediction with the target and compute the loss function. Architecture built

in NN-SVG.

Convolutional neural networks (CNNs or ConvNets) were introduced to capture the

spatial relations in the data (LeCun and Bengio, 1998). Here, filters that are represented

by matrices replace the neurons. In the CNNs, the weights are in the filters as the matrix

elements. Also, each filter is responsible for a convolution, hence the name for this type of

neural network. In Figure 1.3, we show the architecture of a CNN. CNNs are widely used

to image classification (Krizhevsky et al., 2012) and to image segmentation (Çiçek et al.,

2016) for two-dimensional and three-dimensional data that presents spatial and temporal

correlations (e.g., pictures, snapshots from videos, time frames) (Çiçek et al., 2016; Wang

et al., 2020).

DL methods have several applications in Astronomy. NNs are being used to analyze a

30 Chapter 1. Introduction

Figure 1.3: Convolutional layers from a CNN-based architecture. Each gray block is output

after a convolution. The first gray block is the input block. It receives the data (in the form of

4D arrays) and will start to propagate in the model. The last gray block is the output block,

and it will compare the prediction with the target. The hidden blocks act as the hidden layers

in the deep neural networks. Red blocks inside the gray blocks are the filters performing the

convolutions. In blue, we can see how the convolutions map the regions in the next block.

Architecture built in NN-SVG.

large volume of observational data that would be impracticable otherwise (Rezaie et al.,

2019; Pearson et al., 2019). It allows to automatically classify objects (Hon et al., 2017)

and find their properties (Akeret et al., 2017) in a faster way than traditional methods.

Recently, a NN was used to find evidence of exoplanets in the system Kepler-90 from data

of its spectrum (Shallue and Vanderburg, 2018). Also, CNNs were used to analyze in a pixel

level of astronomical images (Hausen and Robertson, 2019). Hausen and Robertson (2019)

used data from the flux of astronomical observations and performed a segmentation using

CNNs. Through the segmentation and flux data, the model could learn the morphological

classification.

The use of DL in cosmological simulations is a new and promising application (Per-

raudin et al., 2019; Mathuriya et al., 2018; He et al., 2019). Cosmological simulations are

examples of simulations with high computational cost and time. DL can potentially speed-

up those simulations and make it possible to investigate a larger fraction of the parameter

space (Perraudin et al., 2019).

Section 1.4. Related Work 31

1.4 Related Work

Several papers showed the promising results of using ML to solve challenging physical

problems (Mohan et al., 2019; Pathak et al., 2018; Cranmer et al., 2020; Greydanus et al.,

2019). There is progress in the direction of using ML to understand chaotic systems. Some

of the works published in this field served as an inspiration for this project (Pathak et al.,

2018; Mohan et al., 2019; Breen et al., 2020).

Pathak et al. (2018) explore ML as a tool to predict the future of spatiotemporally

chaotic systems from observations of their previous states. The reservoir computing is the

ML approach in Pathak et al. (2018), and it is a framework of recurrent neural networks

(RNNs). The reservoir computing technique (Lukosevicius and Jaeger, 2009) is effective

for data with a temporal sequence. In Pathak et al. (2018), the system is spatiotemporally

chaotic modeled by a modified Kuramoto-Sivashinsky equation, which is a fourth-order

partial differential equation:

∂y

∂t
= −y ∂y

∂x
− ∂2y

∂x2
− ∂4y

∂x4
+ µ cos

(
2πx

λ

)
(1.2)

The last term is the modification with µ and λ being constants. The solution of Equation

1.2, i.e., the scalar field y(x, t) is the data used to train the model. The goal is to predict

y(x, t) for t > 0 from solutions −T 6 t 6 0 for x varying in the range 0 > x > L where L

is integer of λ.

Figure 1.4 shows the comparison between the numerical solutions (a), the predictions

from the ML (b), and the error (c). The reservoir computing can predict based only on

previous states of the system from the numerical solutions. They achieved the predictions

until half of the chaotic behavior of the system in the test set. After Λmaxt = 6, a single

reservoir could not predict the system correctly, and the Λmaxt = 10 is the limit for 64

reservoirs. Λmaxt is the Lyapunov time.

Breen et al. (2020) proposed using DL to replace numerical solvers for the chaotic

three-body problem. Breen et al. (2020) fed a deep NN with simulations of the three-body

problem. To have a large dataset, they simulated the three-body problem by using the

integrator Brutus with different initial conditions. In their work, they trained the deep

NNs with 9900 simulations. The trained NN could provide a solution between 105 and

108 times faster than a numerical solver. Since the numerical simulations fail when the

particles collide, this is a limitation for the ML method as well. The model did not learn

32 Chapter 1. Introduction

Figure 1.4: The comparison between the numerical solutions to equation 1.2 (a) and the

predictions (b) for µ = 0, L = 22 and using one reservoir. The last panel is the error - (b)

minus (a). Λmax is the maximum Lyapunov exponent of the system. Figure extracted from

Pathak et al. (2018).

from observations of the particles colliding or near collision orbits.

Mohan et al. (2019) used a long short-term memory network (LSTM) to model the

dynamics of a turbulent flow without directly solving the fluid equations. The work uses

a type of RNN as reservoir computing. LSTMs networks have a lower computational cost

since they have the presence of a forget gate. The forget gate enables the model only to

learn useful information from the data. Mohan et al. (2019) fed the LSTM model with

the 3D-velocity fields from forced turbulent flows and magnetized turbulent flows. The

results show turbulent fields predicted by LSTMs that could give similar results to the

simulated ones. They based the similarity on physics of the system by analyzing energy

spectra, Fourier transform of the velocity and the flow morphology. However, the Mohan

et al. (2019) did not use datasets with gravity.

1.5 This Work

We propose in this work to use DL methods for creating a model for the complex

nonlinear dynamics of an accreting BH - what we call BH weather forecasting. To this

date, it is the first time that this application of DL is proposed. We are using the longest

HD simulation of RIAFs made by Almeida and Nemmen (2020) to train our model. Since

Section 1.5. This Work 33

we are dealing with spatial features, we will use CNNs and CNNs-based networks to build

our architecture. Our goal is to create a model that can predict the future states of the

accretion flow by itself from observations of the previous states of this system.

The structure of this dissertation is as follows: In Chapter 2, we describe the astrophy-

sical data used to train the models in this work. In Chapter 3, we present the methods

such as the learning procedure, the model, and the techniques. We show the results in

Chapter 4. In Chapter 5 and Chapter 6, we discuss the results and give the conclusion,

respectively.

Chapter 2

Astrophysical Dataset

To train a DL model, it needs to learn from data. We give the observations to the model

as the data of the system we want the model to learn from. In this project, we want the

DL model to learn black hole physics from the density field of the accretion flow. In Figure

2.1, we show the pipeline of the learning process. The first stage is to obtain data from

numerical simulations. The simulated data in this project is from Almeida and Nemmen

(2020) who performed HD simulations of a RIAF. We use the matrices corresponding to

density field ρ(r) at different times t as the input data. Then, we perform data preparation

in every matrix before we feed the DL model with them. The data preparation puts the

data in the format appropriate for the learning procedure. We divide the data into three

stages: training, validation, and testing. The training is when the model observes and

learns from the dataset. The validation is an unbiased evaluation during the training

procedure. In the validation stage, the model does not use this dataset to learn directly.

Finally, the final step is the test set that is when we obtain the predictions from the

trained model, i.e., the BH accretion flow density fields without the need to solve the

fluid equations numerically. We will compare the predictions with the ground truth from

numerical simulations.

In this chapter, we will first go through the numerical simulations from Almeida and

Nemmen (2020) in Section 2.1, explaining the fluid equations that are solved and the data

obtained. Then, we will explain the data preparation used in this project in Section 2.2.

Finally, in Section 2.3, we will show: training, validation, and testing, as well as the input

and output of the DL model.

Section 2.1. Numerical Simulations 35

Figure 2.1: A flowchart of how the data flow from the numerical simulations until the

training part. The goal is to obtain a model that outputs ρ(r, t) without solving the fluid

equations numerically.

2.1 Numerical Simulations

Almeida and Nemmen (2020) performed HD simulations of SMBHs accreting at low Ṁ .

The main interest of the work was to study winds and feedback from SMBHs accreting

in this mode. They considered a Schwarzschild BH, by adopting a pseudo-Newtonian

potential to describe the BH’s gravity. The viscous stress tensor incorporates the angular

momentum transport.

Their work used units such that GM = 1, and the Schwarzschild radius is given by RS

= 2GM/c2 = 1. Lengths and times are expressed in terms of units of GM/c2 and GM/c3

respectively. The coordinates are as follows: R corresponds to the radius in cylindrical co-

ordinates, r in spherical coordinates. The mathematical method used to solve numerically

the Navier-Stokes equations is described in more details by Almeida and Nemmen (2020).

• Equations set

The fluid equations are a set of conservation equations:

dρ

dt
+ ρ∇ · v = 0, (2.1)

ρ
dv

dt
= ∇P − ρ∇ψ +∇ ·T, (2.2)

ρ
de/ρ

dt
= −P∇ · v +

T2

µ
, (2.3)

where ρ is the density, v is the velocity, P is the pressure, and e is the internal energy

density. The BH’s gravity information is given by the pseudo-Newtonian potential ψ =

GM/(r−Rs) (Paczyńsky and Wiita, 1980). ψ incorporates the features of Schwarzschild’

solutions of BH as, for example, the position of the innermost stable circular orbit (ISCO),

risco = 3Rs for a Schwarzschild BH.

36 Chapter 2. Astrophysical Dataset

The stresses play a fundamental role in the accretion flow. The magnetic stresses are

responsible for transporting angular momentum. Thereby leading to accretion. Almeida

and Nemmen (2020) incorporate these stresses in an effective way, through the viscous

stress tensor T given by:

Trφ = µr
∂

∂r

(vφ
r

)
, (2.4)

Tθφ =
µsinθ

r

∂

∂θ

(vφ
sinθ

)
, (2.5)

where µ = νρ is the viscosity coefficient and ν is the kinematic viscosity (Landau and

Lifshitz, 1959). The only non-zero components of T are the azimuthal components. We

are interested only in the azimuthal values because the dynamical friction, which causes

the angular momentum transport, is due to rotation in the azimuthal direction. Almeida

and Nemmen (2020) explore two parametrizations of the kinematic viscosity, similarly to

Stone et al. (1999):

• ν = αr1/2 is the “K-model” in Stone et al. (1999). This parametrization of ν is

referred by Almeida and Nemmen (2020) as ST. Since it depends only on r, it does

not depend on the dynamics of the system. With this parametrization, the flow’s

dynamics do not affect the viscosity.

• ν = αc2s/ΩK is the parametrization by Shakura and Sunyaev (1973). Almeida and

Nemmen (2020) referred to as SS. The Shakura-Sunyaev’s parametrization comes

from two considerations: the turbulence’s velocity cannot be higher than the me-

dium’s sound velocity to avoid shock effects. Another consideration is that the tur-

bulence must be inside the torus to make the angular momentum transport locally.

In the parameterizations of ν, ΩK is the Keplerian angular velocity, cs is the sound

speed, α is the Shakura-Sunyaev parameter (Shakura and Sunyaev, 1973). In accretion

flow simulations, α is the parameter associated with turbulence (Stone et al., 1999; Shakura

and Sunyaev, 1973). Almeida and Nemmen (2020) used an α varying with R but for our

purposes, we used only the data where α is constant with a value between 0.01 < α < 0.3.

• Initial Conditions

Section 2.1. Numerical Simulations 37

The initial condition of the simulations is a rotating torus in dynamical equilibrium.

The size of the torus varies with the choice of the angular momentum distribution. It varies

from Rin = 5− 20Rs to Rout = 500Rs. The angular momentum configuration is important

since it describes the torus’ kinetic energy. Almeida and Nemmen (2020) investigated two

angular momentum profiles:

• l(R) ∝ Ra, with a = 0.0, a = 0.2, and a = 0.4. Since it is a power-law, we will refer

to it as PL.

• l(R) =

constant R < 21RS

0.71lK otherwise

, where lK is the Keplerian specific angular momen-

tum. Since it is based on Penna et al. (2013), so we will refer to it as PN.

The values of a affect the size of the torus. In Figure 2.2, there are four plots from

Almeida and Nemmen (2020). It shows how the profiles described above affect the shape

and thickness of the torus.

Figure 2.2: Plots showing the different momentum angular profiles, extracted from Almeida

and Nemmen (2020). The first one is showing the profile l(R) = 1, or the situation where the

profile is PL and a = 0. The second and the third one are showing l(R) = Ra with a = 0.2

and a = 0.4, respectively. The last one is showing the torus shape when it uses the Penna’s

profile. Here we can see how the angular momentum profiles change the shape and thickness

of the torus.

Even though the torus has a size Rout = 500Rs, the computational grid extends to ∼

104Rs, to avoid any undesirable effects in the radial direction. Meanwhile in the azimuthal

direction it was assumed 2◦ < θ < 178◦. The grid, shown in Figure 2.3, was fixed for all

simulations and has a size of (400, 200).

• List of Simulations

38 Chapter 2. Astrophysical Dataset

Figure 2.3: The simulation grid. While in the inner part, the resolution is better, the outer

parts have less resolution. The same goes for the polar regions.

Almeida and Nemmen (2020) performed eleven simulations varying viscosity profile, α,

and the angular momentum profile. Table 2.1 shows the simulations with their respective

parameters as well as the number of snapshots generated. To our interests, we will dis-

tinguish the angular momentum profile as PN or PL and the viscosity profile ν as ST or

SS. The time difference between two frames is ∆t = 197.97GM/c3, and it is the condition

between two frames defined by Almeida and Nemmen (2020)’s work.

Table 2.1 - This table shows all simulations performed by Almeida and Nemmen (2020).

The name is based on the parameters of the simulations. In the second column, they are

distinguished as Penna (PN) and power-law (PL). The third column shows the name of the

parametrization of the viscosity ν: Shakura-Sunyaev (SS) and Stone (ST) with the Shakura-

Sunyaev’s parameter α in the fourth column. The last column is the number of snapshots.

This last feature is essential for this present work.

Name l(R) ν α Number of Snapshots

PNST01 PN ST 0.01 4059

PNST1 PN ST 0.1 456

PNSS1 PN SS 0.1 4355

PNSS3 PN SS 0.3 3678

PNSSV PN SS α(R) 3840

PL0ST1 PL ST 0.1 380

Section 2.2. Data preparation 39

Tabela 2.1 - Continuation

Name l(R) ν α Number of Snapshots

PL0SS3 PL SS 0.3 1114

PL2SS1 PL SS 0.1 1068

PL2SS3 PL SS 0.3 1068

PL2ST1 PL ST 0.1 190

PL4ST01 PL ST 0.01 1097

We stress that the α parameter here is not exactly the Shakura-Sunyaev parameter. The

exact Shakura-Sunyaev’s prescription are the ones in simulations with Shakura-Sunyaev’s

characterization. In Figure 2.4, we show some examples of the density maps.

2.2 Data preparation

Before beginning the DL analysis, we need to prepare the data. We will discuss the

data preparation through the following steps:

• Normalization

• Crop

• Create data cubes

• Organize the input and output

Normalization is required when the ranges of values of the data are too broad. In our

data, we have values of the density as low as ∼ 10−4 and others as large as ∼ 101, we have

the same min-max values for training set and testing set. If we do not normalize the data,

we introduce a bias in the training, where the model will give more weight to larger values,

thereby losing information regarding the lower ones. The main goal of normalization is

to have unbiased learning, so instead of a range (10−4, 101) it is preferable to use a range

[0, 1]. Usually, in deep learning methods, the most common normalization is to change to

a range [−1, 1]. Still, since our data consists of positive values as the density only accepts

positive values, then we used a range [0, 1]. We have also tested a min-max normalization:

40 Chapter 2. Astrophysical Dataset

Figure 2.4: Examples of the density plots from the simulations PL0SS3, PNSS3, and PNST1.

The plots show the evolution of the fluid in three distinct times. Both axes are in Rs units,

and the colorbar is log(ρ).

ρNORM =
ρ−min(ρ)

max(ρ)−min(ρ)
, (2.6)

where ρNORM are the normalized values, and ρ are the original values but the model didn’t

converge in preliminary tests due to a very biased data. Instead, the best approach we

found was to use a logarithmic min-max normalization:

ρNORM =
log(ρ)− log(min(ρ))

log(max(ρ))− log(min(ρ))
. (2.7)

We also need to crop the original data. In Figure 2.5, we show how the transformation

Section 2.2. Data preparation 41

works. The atmosphere presents a problem to the model since it fills a vast area in the

data and the model ends up ignoring the torus region over the atmosphere region.

Figure 2.5: Plots of log(ρ) from PNSS3 before the crop in Cartesian coordinates. In the

first panel, we see the plot before the crop. The original matrix is in polar coordinates with

200× 400 size. The second panel is the same plot after the crop of the atmosphere part. The

original matrix is in polar coordinates with 192 × 256 size, it represents a crop of 8 in the

polar direction and 144 in the radial direction.

The crop was performed as follows: in the radial direction, we removed 144 cells that

span 9500GM/c2, encompassing mostly atmosphere with ρ < 10−3. Meanwhile, in the

polar direction, we remove eight cells.

The last step of the data preparation is to organize how the data will go into the model.

Spatial dependence is already intrinsic in the data since each frame has ρ as a function of

the positions. Taking into account the temporal structure is more challenging because we

need to incorporate this in the model. To incorporate the temporal structure, we create

a 3D array containing five consecutive frames. In this work, we call these five consecutive

frame, channels. In Figure 2.6, we show how we build a channel.

The final format of the data consists of an array with size (N, 256, 192, 5), where N

is the number of temporal frames available. We will feed the array to the architecture as

the input and the output will have the same size. If the input is the block where the first

snapshot is the one of time tn, then the array will be (bs, 256, 192, tn to tn+4), the output

will be (bs, 256, 192, tn+5 to tn+9), where bs is the batch size, shown in Figure 2.7.

42 Chapter 2. Astrophysical Dataset

Figure 2.6: Data structuring for the CNN. First, we append five consecutive (256 × 192)

arrays creating a (256 × 192 × 5) array. This block will be a 3D array with spatial and

temporal information. The vector will then be (N × 256× 192× 5) array with N being the

number of the snapshots.

2.3 Training, Validation and Testing sets

In the model’s learning process, there are three critical datasets: the training, valida-

tion, and test set. Each one has an important role when it comes to training and evaluating

the model:

• Training set: this dataset is what the model uses to learn. It observes the data

and learns from it. The loss function is calculated from examples of this set. In our

work, the training set consists of a sequence of density fields that are solutions of the

fluid dynamics equations.

• Validation set: this set is used to validate the training. The validation set informs

the model’s performance with data not seen in the training part. The validation

is not used to update the weights directly, it is only used to evaluate the model.

This set is used to judge whether the weights are updated correctly and whether the

training can stop. The validation set allows an unbiased validation of the model.

• Testing set: the testing set is never seen by the model during the training. We feed

this set only after the model is trained. The training set is used to evaluate how well

Section 2.3. Training, Validation and Testing sets 43

the model reproduces the data.

An important part of the process of building a model is to define how the data it will

be the split among the training, validation, and testing sets. In the literature, the most

common splits are 70%, 15% and 15% or 80%, 10% and 10%. We employed 80% for the

training set and 20% for the testing set. The validation set is given by 10% of the training

set. This will give the train, validation and test splits equals to 67.5%, 12.5% and 20%,

respectively.

Figure 2.7: The input is a block with size (bs, 256, 192, tn : tn+4) and the output is the block

with size with (1, 256, 192, tn+5 : tn+9). tn represents snapshot of time tn. bs is the batch size

number. The input and output is (bs, 256, 192, tn+1 : tn+5) and (bs, 256, 192, tn+6 : tn+10),

respectively.

Chapter 3

Methods

In this work, our primary goal is to develop a DL model that can learn the states of the

accretion flow around an SMBH. We want to achieve this by feeding the model with scalar

fields from numerical simulations. To be more specific, we will supply a DL architecture

with density fields obtained by HD numerical simulations of a RIAF. The expected result

is that the model can predict future states by itself. Ideally, it will learn basic features

such as density values and the shape of the torus as well as the physics of the system.

The model won’t directly solve the Navier-Stokes equations introduced in 2, it will learn

by observations of the density states. In this chapter, we will introduce the DL methods

and how they are used to learn and make predictions. We want to give an overview of what

are neural networks (NNs) and how they learn by observations. Also, we will introduce

other types of NNs that we use in this work. It is useful to give a mathematical treatment

of how NNs learn.

The main architecture used in this project is a convolutional neural network (CNN) in

a U-shape architecture called U-Net (Ronneberger et al., 2015). The U-Net is a network

that deals with spatial features since it is CNN-based. The concatenations between the

encoder and decoder make the network to consider the input when creating the output.

The architecture is fed with the data explained in the previous chapter after the treatment

procedure detailed in Section 2.2.

3.1 Neural Networks

Neural networks (NNs) are the primary tool in DL. They were introduced after the

work of McCulloch and Pitts (1943) that tries to mimic the learning process of biological

Section 3.1. Neural Networks 45

neurons. The first NN - the perceptron - had one neuron and one output. After, the NNs

evolved to a multilayer perceptron (MLP). The MLP consists of neurons and layers, as

shown in Figure 3.1. The first layer is called the input layer, and the last layer is called

the output layer. The layers in the middle are called hidden layers. Usually, we consider a

shallow neural network as an MLP with one hidden layer, while an MLP with more layers

is called a deep neural network (DNN). Each layer l is composed of nodes that are called

neurons, and each arrow that connects the neurons from a layer to the next layer has a

weight w associated.

Figure 3.1: On the left, we show a shallow NN. A shallow NN has one hidden layer, which is

the layer between the input layer and the output layer. One the right side, we show a DNN.

The DNNs have more hidden layers. In the NN showed here, the DNNs have two hidden

layers. It is important to note that a DNN can have a large number of hidden layers. More

hidden layers, deeper the NN is. Each arrow has a weight w associated with it.

• Learning Process

From here, we will introduce some notation as follows:

• l is the number of the layer. l = 0 is the input layer, l = 4 is the fourth hidden layer,

and l = L is the output layer, where L is the total number of layers.

• i is the number of the neuron in the layer l and j is the number of the neuron in the

layer l + 1.

• w(i,l),(j,l+1) is the weight in the arrow that connects the neuron i in the layer l to the

neuron j in the layer l + 1.

• zi,l is a linear combination in the neuron i in layer l.

• σi,l is the output in the neuron i in layer l.

46 Chapter 3. Methods

• bi,l is the bias term in the neuron i in layer l.

• f(·) is the non-linear activation function.

• X = (x1, x2, ..., xM) is the input vector of the input layer. This is the data and

information we feed the NN. M is the number of the dimensions of the input.

• Y = (y1, y2, ..., yN) is the target vector. This is the data and ground-truth we feed

the NN to compare its prediction. N is the number of the dimensions of the output.

• Ŷ = (ŷ1, ŷ2, ..., ŷN) is the output vector of the output layer. This is the prediction of

the NN.

To simplify, we will demonstrate how the information goes into the NN by using the

scheme shown in Figure 3.2.

In the scheme, the outputs of the layer l are σ(1,l) and σ(2,l). They will go through the

arrow until reaching the neuron j = 1 of the layer l + 1. The first step is an operation

z(1,l+1), given by:

z(1,l+1) = w(1,l),(1,l+1) · σ(1,l) + w(2,l),(1,l+1) · σ(2,l), (3.1)

where b(1,l+1) is the constant bias associated with this neuron. Usually, the operation

z(1,l+1) has also another term called bias b(1,l+1). The value z(1,l+1) will then be activated

by a non-linear function f(·) called the activation function:

f(z(1,l+1)) = f
(
w(1,l),(1,l+1) · σ(1,l) + w(2,l),(1,l+1) · σ(2,l)

)
(3.2)

This function can be any non-linear function. The most common activation functions are

ReLU, sigmoid, and tanh given by:

• ReLU: f(x) = max(0, x)

• Sigmoid function: f(x) = 1
1+e−x

• Tanh function: f(x) = ex−e−x

ex+e−x

The activation functions are used to insert non-linearity in the NN. Without non-

linearity, the composition of function will be a linear function and it will not capture

non-linear features. The output of the neuron is then:

σ(1,l+1) = f(z(1,l+1)) = f(w(1,l),(1,l+1) · σ(1,l) + w(2,l),(1,l+1) · σ(2,l)) (3.3)

Section 3.1. Neural Networks 47

Figure 3.2: We show a scheme with three neurons. Two neurons in the layer l and one

neuron in the layer l + 1. The outputs of the layer l are σ(1,l) and σ(2,l) and the output of

the layer l + 1 is σ(1,l+1). We represent two arrows in this scheme connecting the layer l to

layer l + 1 through its neurons. The weights of each arrow are w(1,l),(1,l+1) and w(2,l),(1,l+1).

The first step inside the neuron of the layer l + 1 is an operation referenced as z(1,l+1) and

the second step is the activation function f(z(1,l+1)).

This output will then be the input of the next layer. It is important to note that the

information of the input layer is the data itself X, and the output of the output layer is

the final prediction of the NN, Ŷ .

The method described above (Goodfellow et al., 2016) will happen in every neuron and

layer of the NN in a forward direction, always going from layer l to layer l + 1 until it

reaches the layer l = L, the output layer. The output layer will then produce the final

prediction Ŷ . This process is a forward process since it only moves in one direction, and

it doesn’t go backward.

After the last output Ŷ is predicted, it is time to calculate how this prediction differs

from the target values Y and how to inform the NN to update its weights w(i,l),(j,l+1). The

weights w(i,l),(j,l+1) are responsible for making the NN learn, in other words, the goal here

48 Chapter 3. Methods

is to find the combination of w(i,l),(j,l+1) that makes the predictions Ŷ close to the target

values Y . Mathematically, Ŷ is the result of a function F that depends on the information

fed to the model and the weights w(i,l),(j,l+1):

Ŷ = F (X,w(i,l),(j,l+1)) (3.4)

Having Ŷ available, the NN needs to know how similar Ŷ and Y are. A loss function

is defined to find the difference between Ŷ and Y . The loss function L can be any error

function that is appropriate for the problem, e.g., mean squared error (MSE), mean abso-

lute error (MAE) or mean percentage error (MAPE). In our project, we use a combination

of MAE functions as losses:

L = |Y − Ŷ | (3.5)

The loss function L is usually called cost function C. However, we can consider the

cost function as an average for all data:

C =

∑N
n=1 |Y − Ŷ |

N
, (3.6)

where N is the number of data points available in training. In our work, we may refer to

the cost function as a loss function. We want the minimum value of the difference between

Y and Ŷ , so it is essential to minimize the loss function. In DL, the standard method to

minimize a function is called gradient descent (Ruder, 2016). The gradient is a vector that

points to the direction where the value of the function increases. The gradient descent

is the opposite since it indicates the direction where the function minimizes. Suppose we

have a model with only one parameter w and the shape of the function C(w) as in Figure

3.3. We are at point A, but we want to find the minimum value of C(w), point B. We take

the gradient of the C(w) (Equation 3.7) and multiply by -1 (Equation 3.8), this will give

the direction of the minimum. To control the magnitude of the vector, we can multiply by

a constant η (Equation 3.9), this constant is called the learning rate.

∇C =
∂C
∂w

(3.7)

− 1 · ∇C = − ∂C
∂w

(3.8)

− η · ∇C = −η ∂C
∂w

(3.9)

Section 3.1. Neural Networks 49

In Figure 3.3, we show how the learning rate affects the vector that goes in the direction

of the minimum. Since we are dealing with infinitesimal values, we can assume that −η ∂C
∂w

is how much the weight w should change to minimize the function C. In this way, the

weight w can be updated as:

w := w − η ∂C
∂w

(3.10)

Figure 3.3: The function C(w) in relation to w. The green curve is the curve of C(w). The

A is the point where we are after one forward step. The ideal is to get to B. In blue arrow,

we show how the vectors change with the gradient descent and with the multiplication of η.

The procedure of update backwards is called backpropagation and it is the learning

process of the NN. In a realistic approach, the function C(w) depends on a large number

of weights w(i,l),(j,l+1) = (w(1,1),(1,2), w(2,1),(1,2), ..., w(P,L−1),(M,L)), and the gradient will also

be a vector ∇C = (∂C
∂w(1,1),(1,2)

, ∂C
∂w(2,1),(1,2)

, ..., ∂C
∂w(P,L−1),(M,L)

). The function acts in an N-

dimensional space so we cannot plot the function in a 3D space. The backpropagation

algorithm consists of:

50 Chapter 3. Methods

• Find the gradient of the function C.

• Find the appropriate value of η.

• Update the weights w(i,l),(j,l+1) : w(i,l),(j,l+1) := w(i,l),(j,l+1) − η ∂C
∂w(i,l),(j,l+1)

Some functions C may have local minima. To avoid being trapped by a local minimum,

the learning rate is essential. A higher value of the learning rate will help the model to

escape the local minima. However, if the learning rate is too high, it can miss the best

minimum, and it can cause numerical problems, e.g., the cost function gets too high, and

the model never converge. The gradient descent and the update described above is one of

the optimization methods. Other optimizations methods aim at better and faster conver-

gence such as Adam (Kingma and Ba, 2014), Adadelta (Zeiler, 2012), Adagrad (Lydia and

Francis, 2019). In our work, we use Adam (adaptive moment) as the optimization method.

Adam uses the same method of gradient descent, but the update is written instead as:

w(i,l),(j,l+1) := w(i,l),(j,l+1) − η
m̂√
v̂ + η

, (3.11)

where:

m̂ =
m

(1− β1)
with m := β1m+ (1− β1)

∂C
∂w(i,l),(j,l+1)

(3.12)

v̂ =
v

(1− β2)
with v := β2v + (1− β2)

[
∂C

∂w(i,l),(j,l+1)

]2
. (3.13)

In Equation 3.11 and Equation 3.12, β1 and β2 are constants that are defined before

the training. The first m and v are initialized as β1 and β2. We choose Adam as our

optimization method because of its momentum parameters, the optimization is faster and

avoids vanishing and exploding gradients when it deals with sparse gradients (Kingma and

Ba, 2014).

In summary:

1. The data enters the model through the input layer.

2. The input layer will pass the data to the first hidden layer through connections with

weights w.

3. While in the hidden layers, Equation 3.1 and Equation 3.2 shows that will occur

operations, this will go until the last layer.

Section 3.2. Convolutional Neural Networks 51

4. In the last layer, the prediction will be compared with the target by a cost function

(Equation 3.6).

5. The process of updating backwards starts by finding the gradient descent of the cost

function (Equation 3.7).

6. The gradient descent will be used to update the weights (Equation 3.12).

7. After all the weights are updated, the forward process starts again.

The learning process will end, ideally, when the cost function converges to its minimum

value.

3.2 Convolutional Neural Networks

While NNs are composed of neurons, the units of CNNs correspond to filters (LeCun

and Bengio, 1998) which deals better with spatial features since they preserve spatial

dependencies. In CNNs, the data can be two-dimensional (2D) or three-dimensional (3D).

CNNs are composed of layers that are 2D or 3D arrays – depending on the size of the

input – and the main operation is a convolution in a matrix. Figure 3.4 shows a scheme

of a ConvNet2D architecture, the input data is a 2D array that may have channels as well

as the output of each convolutional layer. For example, a picture has three channels: red,

green, and blue channels that are matrices, so we can split the picture into 3 arrays —the

channels —, as shown in Figure 3.5. The picture is a block (H ×W ×C), where H is the

height, W is the width, and C is the number of channels.

In this project, our input is a density field of an accretion flow around an SMBH

accreting at low rates. This density field is a matrix with size (256×192) and the channels

in our case are the density arrays at different times. We show a scheme (Figure 2.7) of

how our data enters the CNN as an array (256× 192× 5), where C = 5 is the number of

the channels and we want the CNN to output an array with the same dimensions as the

input. The entire CNN is composed of layers appropriate for a 2D problem, as shown in

Figure 3.4. We will call the array that goes into a layer as the source and the output as

the destination. Input is the data that goes in the input layer, and output is the prediction

that the model predicts in the output layer.

52 Chapter 3. Methods

Figure 3.4: An architecture composed of CNNs. The first layer is the input layer - the

information we give the model. The layers in the middles are analogous to the hidden layers

in NNs. The last layer is the output layer, as in the NNs, the output layer is what gives

the final prediction of the model, and it will compare with the target. Conv2D represents

the operation made by convolution layers that are the layers that will learn and update

their parameters analogous to the neurons. MaxPool layers are layers that realize resizing

operation by decreasing the width and height of the matrices. UpSampling is the opposite of

MaxPool.

Figure 3.5: Picture extracted and modified from corochann.com. The picture is a (H ×W)

matrix. However, we can separate the three channels RGB in 3 matrices. If we append these

matrices in a block, we will have an array of (H ×W × C × 3).

• Max-Pooling Layer

Figure 3.4 shows an input layer with size H × W × C. When H and W are large

numbers, this can lead to an expensive computational cost. One solution to keep the main

information and decrease the size of the matrix is to use a Max-Pooling layer (MaxPool)

(Nagi et al., 2011). The MaxPool is a layer —a MH ×MW matrix. It will pass through

Section 3.2. Convolutional Neural Networks 53

a matrix and takes the maximum value of the region, i.e., it will take the dominant infor-

mation. Usually, the MaxPool layer is (2 × 2), so it decreases the size of the source with

dimensions H ×W by half, except the channel dimension that will stay the same. It is

important to remind that the MaxPool layer does not have weights to learn, and it can be

applied between any layers.

Figure 3.6: This example shows how a 2× 2 MaxPool layer acts. It extracts the maximum

value of each (2× 2) region of the matrix. This operation is important to decrease the size of

the arrays inside the model and to extract dominant information of each region. It prevents

the model from learning the non-important features of the data.

• UpSampling Layer

The UpSampling layer (Gopinath and Burrus, 1994) acts as the opposite of the MaxPool

layer. The UpSampling layer will repeat the most important features of the source. In

Figure 3.7, we show an UpSampling layer repeating the information from a (2× 2) matrix

until it increases to a (4× 4). The UpSampling layer is important to get the data back to

its original size in our case. Our input has a dimension of (256× 192× 5) and our output

also has the same dimension. After the MaxPooling layers, we get our data the same size

as before with UpSampling layers.

Other options for resizing layers are available. The most common is the deconvolution

layer. We choose to use the UpSampling layers since it does not have weights to learn,

meaning a lower computational cost and thus a better performance for our problem.

• Convolution Layer

The convolutional layers (Conv2D) are layers that perform a convolution operation

(LeCun and Bengio, 1998). The convolution is the operation where we take the filters, and

54 Chapter 3. Methods

Figure 3.7: This example shows how a (2× 2) UpSampling layer would act. It will take the

values and repeats them until the same dimension of the UpSampling layer.

we pass through all the data transforming it (Figure 3.8). Let S be the source matrix, F

be the filter and D the destination matrix:

D[i, j] = (S ∗ F)[i, j] =
∑
k

∑
l

F [k, l]S[i+ k, j + l]. (3.14)

The convolution is denoted by ∗, and it is equivalent to the operation z in the NNs.

The learnable parameters are the elements of the filter F .

Figure 3.8: Illustration from Podareanu et al. (2019). Here, it shows a source layer, which

is the layer that goes through the convolution and the destination layer that is the output

of the convolution. The operation of the convolution for this example is shown here: it will

take the source and maps the regions in the destination.

The filters have a size (FH × FW × C), where C is always the same number of the

Section 3.2. Convolutional Neural Networks 55

channels in the source (Figure 3.9). The number of channels in the destination is the

number of filters. After the convolution of one filter, the destination will be a matrix with

C = 1. If four filters make the convolution, the destination will be with C = 4. Each

channel is responsible for the convolution in the respective channel: the channel C = 1 of

the filter will be responsible for the convolution of the channel C = 1 of the source.

Figure 3.9: The yellow block is the source, and the four colors block is the destination block.

All the filters have the same number of channels as the source. The destination block has the

number of channels the same number of filters.

As we saw, the filters F goes through all the source S. We can control how they will

perform the convolution. There are two properties called stride and padding. The stride

controls how the filter will shift in the source, and the padding controls the size of the

destination by adding zeros around the source. Typically, the strides shift 2 elements in

the convolution, and the padding is determined to aim that the destination and source

will be the same size after the convolution. The size of the destination [H ′,W ′, C ′] after a

convolution is given by:

[H ′,W ′, C ′] =

[
H + 2P − FH

Nstride

,
W + 2P − FW

Nstride

, Nfilters

]
, (3.15)

where H and W are the height and width of the source, FH and FW are the height and

width of the filters, P is the padding number (the number of rows and columns adding

zeros), Nstride is how much it should shift and Nfilters is the number of filters.

56 Chapter 3. Methods

• Learning Process

The forward propagation of the CNNs is similar to the one previously explained for

NNs. The difference is that instead of a linear combination of the weights w, the operation

is the convolution and the same filter is applied in all the input’s points. The elements of

the matrix F [k, l] in Equation 3.14 represent the weights. Precisely, the filter F [k, l] has

two learnable parameters as the NNs: the weights w(k,l) and the bias b(k,l), where (k, l) is

the element in the filter f . The forward propagation is the following:

zl(i,j) =
∑
k

∑
l

w(k,l) · σl−1(i−k,j−l) + b(k,l) (3.16)

σl(i,j) = f(zl(i,j)). (3.17)

The notation here will be:

• zl(i,j) is the result of the convolution.

• w(k,l) and b(k,l) are the learnable weights and bias. They are the elements of the filter.

• σl(i,j) is the output of the layer l.

• σl−1(i−k,j−l) is the output of the layer l − 1.

• f(·) is the non-linear activation function.

The process is similar to NNs, with the activation functions being the same. In the

output layer L, the model will compare the prediction Ŷ with the target Y , as explained

in Equations 3.4-3.6 using the function C. The gradient descent method is similar as in

NNs, as well as the update of the parameters w(k,l) and b(k,l):

w(k,l) := w(k,l) − η
∂C

∂w(k,l)

. (3.18)

b(k,l) := b(k,l) − η
∂C
∂b(k,l)

. (3.19)

The only layer that is learnable is the convolutional layer in our architecture. The

MaxPool and UpSampling layers do not have parameters to learn. The learning process

Section 3.3. Architecture 57

described for NNs and CNNs is the process of learning in our project. We use an architec-

ture composed of convolutional layers. The activation functions are all ReLU functions,

and we use Adam optimization already described. In the next section, we will describe the

general architecture we use in this project.

3.3 Architecture

Our architecture, called U-Net, is based on a U-shape architecture proposed by Ron-

neberger et al. (2015) for image segmentation. We choose this architecture because the

input and output have the same dimensions and it connects the encoder and the decoder.

In Figure 3.10, we illustrate our architecture. The architecture is divided in two parts:

encoder and decoder.

Figure 3.10: The scheme of the architecture U-Net based on Ronneberger et al. (2015). The

light blue blocks are the convolutional blocks. The number in red is the number of filters in

that block, and the number in black is how many convolutional layers, with 5× 5 filters, are

in that block. The green rectangles represent the MaxPooling layers after each convolutional

block in the encoder part. The orange rectangles are the UpSampling layers before the

convolutional blocks in the decoder part. The red arrow represents the concatenation between

the convolutional blocks in the encoder with the convolutional blocks in the decoder. The

last convolutional block is the final block, and it will output the prediction. It is the only one

different block while the other ones are composed of ReLU activations, this one is composed

of linear convolutional.

• Encoder

58 Chapter 3. Methods

The encoder is the part of the architecture that is composed of blocks with MaxPool

layers and Convolutional layers. The MaxPool layers act to resize the input aiming to

low the computational cost and to keep only the relevant information of the model. The

MaxPool is essential since the model can give attention to more irrelevant information,

and it can affect the learning process. It corresponds to an arm of the U-shape.

In the encoder, the architecture will learn important features of the input data, and

it will resize them until it reaches the smaller matrix. All the information learned by the

encoder will go to the decoder, as shown in the concatenations in Figure 3.10. These

concatenations provide that the decoder will remember the input data when it predicts

the final output. Our problem is temporal, so the frame N + 1 depends on the frame N ,

so the model must predict new data while taking into consideration the past data.

• Decoder

The decoder is composed mainly of UpSampling and convolutional layers, but it also

presents concatenations of the outputs of the encoder. Concatenations are when two

arrays of the same size are connected by the same axis. In our case, the axis is the one

corresponding to the channels. The decoder is the final part of the model, and it will

predict output Ŷ at its end so that it will compare with the target Y .

We built our model using Keras – a Python deep learning API – (Chollet et al., 2015)

and Tensorflow – software library to build machine learning algorithm– (Abadi et al., 2016).

3.4 Hyperparameters

We choose some parameters as a feature called hyperparameters. Usually, hyperpara-

meters do not depend on each other, so there are several possible combinations of them

since they change from problem to problem. Even though they are defined beforehand,

they can interfere indirectly with how the learning proceeds and its direction.

Despite changing from problem to problem and model to model, some hyperparameters

are general and often used in all models. They are the batch size, learning rate η, and

epochs, described in more details below:

• Batch size: it is the number of data points that will flow through the network to-

gether. If the dataset has N data points and the batch size is n, where n < N ,

Section 3.4. Hyperparameters 59

the model will take the first n data points and train the network, then it will take

the next n data points and train again until it reaches N . The reason to use a

batch size is due to computational cost and time: if n = N it will have an expensive

computational cost and if n = 1 it will take too long.

• Learning rate: it is the parameter that scales the magnitude of the gradient vector

described in the gradient descent method.

• Epochs: it defines how many times the neural network will train. If epochs are equal

to 1, the neural network will pass all the dataset only once, if epochs are equal to

100, the neural network will pass all the dataset 100 times. Too many epochs will

take too much time and can cause the model to memorize the dataset causing an

overfit, on the other hand if the number of epochs is low, the neural network may

not learn and cause underfit.

Other common hyperparameters are the cost function, the number of layers in the ar-

chitecture, the activation function, and the number of filters in each layer. In our model,

we set the batch size, the loss function, and the weights of the loss function as hyperpa-

rameters. The epoch is not a hyperparameter in our problem since we use a technique

called EarlyStopping (Prechelt, 1998). EarlyStopping is a tool that evaluates the learning

process during training. After each epoch, it uses the value of the loss function in this

epoch and compares it with previous values. If, after ten epochs, the loss values do not

decrease, then the EarlyStopping stops the training. We need to avoid overfitting, which

is when the model fits well for a single data set.

Finding the best hyperparameters is a problem since they may not depend on each

other. For hyperparameter optimization, we use a method called a grid search. The grid

search takes a set of the hyperparameters and a metric. For each combination, the model

is trained and the metric is computed. The grid search will find the best hyperparameters

after comparing the metric values of the validation set.

In our problem, the grid search is implemented in a shell script that takes combinations

of hyperparameters and trains the network. The script saves the loss along with the metrics

in a text file after all of them are trained. The best set is the one with the best values of

the metric on the validation set, as described above.

60 Chapter 3. Methods

3.5 Inference

After the model trains, we need to test using the test set. The test set is an unseen set

to the model during the training. It is new data to the model, and it needs to generalize

what was learned. In our case, we want to see how much the model can generalize, so the

inference, i.e., the predictions of the model to this unseen data, is an iteration between the

predictions. In Figure 3.11, we show the scheme of the inference.

Figure 3.11: The first step is to feed the trained model with the first simulation data from

the data set (light blue block). The model then generates output five steps ahead due to the

way we structured the learning. We feed the prediction (green block) in the model, and then

it outputs the next five frames. We iterate until we have the prediction equivalent to the last

frame in the test set. The model only sees the simulation once.

We stress that we trained our model to predict five frames in the future, i.e., ∆t =

989.85GM/c3 times units in the future. We analyze the performance of the model when

it predicts directly from the simulation (Figure 3.12).

Section 3.6. GANs 61

Figure 3.12: In order to analyze the proper training, we need to see how the model behaves

after it predicts directly from the simulation data. The difference with respect to the previous

test is that this one aims at analyzing the training itself, whereas the previous one aims at

evaluating generalization.

3.6 GANs

Generative Adversarial Networks (GANs) are a model of DL proposed by Goodfellow

et al. (2014). GANs consist of two adversarial neural networks: generator and discrimi-

nator. The generator receives a noise and generates an output while the discriminator is

to learn what is real and what is fake — generated by the generator. The GANs follows

a min-max function (Goodfellow et al., 2014). The generator’s goal is to maximize the

probability of the discriminator making a mistake. Meanwhile, the discriminator’s goal is

to get it right if the input is real or fake.

Several fields are successfully using GANs such as particle physics (de Oliveira et al.,

2017) and astrophysics (Schawinski et al., 2017). GANs may present a better performance

than usual NNs, due to the discriminator. Usual NNs take a loss function to evaluate

the output of the model, while the discriminator may act itself as the loss function. The

discriminator learns its parameters based on the properties of the target — real or fake

input.

Another class of GANs are the conditional GANs (cGANs). cGANs take a condition

that the generator must follow in the learning procedure. Isola et al. (2016) shows different

examples of cGANs, e.g., a cGAN takes as input a satellite image and generates the map,

or it takes a daylight picture and produces the same picture in the night time. The text-

to-image papers (Reed et al., 2016; Qiao et al., 2019) are also using cGANs to generate

images from text, i.e., it takes a sentence, and the model outputs a picture from what the

62 Chapter 3. Methods

sentence describes.

Based on pix2pix and text-to-image papers, we apply cGANs in our work. Instead of it

receiveing the previous snapshots, we will feed the model with a vector with the properties

of each snapshot, as in Section 4.2. The vector here takes the angular momentum profile

l(R), viscosity profile ν, α, and the gravitational time tG (Figure 3.13). We normalize

all the properties with a min-max normalization, except for the gravitational time. We

normalize the gravitational time with a logarithm min-max. The architectures of both

generator and discriminator are similar to (Isola et al., 2016) with generator being the

decoder of our CNN.

Figure 3.13: The pipeline of the cGAN model. The input is a vector x with four parameters,

the model M is our trained generator, and the output is the density field ρ(θ,R) for each t.

3.7 Analysis

The output of the model needs to be compared with the target values (simulation

data) to evaluate the model’s performance, i.e., how well it can generalize and learn from

observations. The analysis starts in the learning process with the metrics after each epoch.

• R2 metric

The R2 is commonly used for analyzing regression problems, since it is useful to compare

the predictions with its ground truth. The R2 is based on the variation of the data and

gives a result on the similarity between the target and the prediction (Draper and Smith,

1966). It is also useful since the R2 has an upper limit, i.e., when R2 = 1, the prediction

and the target are equal.

Section 3.7. Analysis 63

Here, the R2 metric is used in the training part as an evaluation metric after each

batch. R2 is defined as:

R2 = 1−
∑

ij(Pij − Tij)2∑
ij(Pij − Pij)2

, (3.20)

R2
ij = 1− (Pij − Tij)2

(Pij − Pij)2
, (3.21)

where P is the prediction matrix, P is the mean of P, and T is the target matrix. The

Equation 3.20 result is a real value and Equation 3.21 is a matrix the size of T and P .

• ∆, MAE and MAPE

We use the mean absolute error (MAE) and the difference (∆) as other evaluation

metrics, besides R2.

The difference between the prediction P and the target T is ∆ = |P − T |. The total

difference is
∑

i ∆ for all data points i. MAE is then defined as:

MAE =

∑
ij |∆ij|
NM

, (3.22)

where N and M is the size of the matrices.

We also use the mean absolute percentage error (MAPE):

MAPE =
1

NM

∑
ij

|∆ij

Tij
|. (3.23)

• 1D and 2D Mean

The mean density ρ in the plots gives us intuition about how the model is learning the

density with respect to the target. We proposed an analysis of the mean in as a function

of θ and function R. First, we fix a coordinate and calculate the mean through the other

one. We show the equation of the density in terms of R (3.24) and in terms of θ (3.25),

with Nθ being the size of the vector in θ direction and the same for NR with the R vector

size:

ρR =

∑
θ ρR,θ
Nθ

, (3.24)

ρθ =

∑
R ρθ,R
NR

. (3.25)

64 Chapter 3. Methods

• Mass

Our model needs to learn the mass conservation from observations only, so it makes

sense to use the mass as an additional metric. In other words, the mass will inform if

the model learns mass conservation. We calculate the mass of the physical where we are

training the model in spherical coordinates, as:

m =

∫
ρdV = 2π

∑
R

∑
θ

ρ(R, θ)R2sin(θ)∆R∆θ. (3.26)

We define mT as the mass of the target and mP as the mass of the same region in the

prediction.

3.8 Procedure

To summarize the steps involved in training our DL method:

• We prepare the data using the data preparation described in section 2.

• The architecture of the model is the U-Net described in figure 3.10.

• A shell script is created with the possible hyperparameter values.

• We run the shell script with all hyperparameters. The hyperparameters and the

evaluation at the end of each training will be appended in a .txt file.

• With the best values of the evaluation using the validation set and R2 metric, we

run the inference described in figure 3.11 and figure 3.12.

• The inference will be analyzed with the methods described in section 3.7.

Chapter 4

Results

In this chapter, we describe the results of this project. We present the results after

training with PNSS3 simulation in Section 4.1. We choose PNSS3 because it is one of the

longest simulations and with more data available. PNSS3 presents a wide range of the

density values 10−5 < ρ < 2, so we customize a loss function (Equation 4.1) to embrace

equally the different regions of the density map.

L = LT + αLHD + βLAD + γLTORUS + δLDIFF , (4.1)

where the weights α, β, γ, δ are hyperparameters as well as the learning rate, and the batch

size. Each loss term of the loss function is a MAE, where LHD, LTORUS, LDIFF , and LAD
corresponds to the higher density region, the torus region, the diffusion region, and the

accretion disk region, respectively. We show each region in Figure 4.1.

In Section 4.2, we present the results of the training with all simulations. Now, we

are dealing with different initial conditions for the torus, so we proposed a different loss

function to deal with these differences:

L = LTOT + aLHD + bLLD, (4.2)

similarly to the previous loss for those data. LHD is the loss for regions where ρ > ρhp, in

the other regions the loss is LLD. a, b and ρhp are the hyperparameters of this problem.

All the terms are MAE functions. The details of hyperparameters and the data splits are

in Appendix A.

We also present the results of conditional generative adversarial networks (GANs) in

Section 4.3. The discussion of the results will be presented in the Chapter 5.

66 Chapter 4. Results

Figure 4.1: The regions of the loss function for the one simulation case. The LHD, LTORUS ,

LDIFF , and LAD are associated to the higher density region, the torus region, the diffusion

region, and the accretion disk region, respectively. We also have the entire region given by

LT . All losses are MAE functions.

4.1 One simulation

We split the forecast into two different kinds: the direct and the iterative prediction.

The direct predictions result after we feed a simulation frame to the trained model, and

the iterative is when we iterate the predictions. In figure 4.2, we show a scheme of both

kinds of forecasting.

Figure 4.2: Two kinds of forecasting: direct (on the left) and iterative (on the right). TheM is

the model already trained, x is the snapshot from simulation, and ŷ is the prediction.

• Direct predictions

Figure 4.3 shows the 2D comparison between the target and the first prediction after

the ending of the training set – equivalent to gravitational time t = 611529 GM/c3. The

Section 4.1. One simulation 67

metrics between the two plots are R2 = 0.9988 and MAPE = 2.8%. It shows that the

model could predict the torus form respecting the density values. We also calculated the

MAPE between this prediction with previous snapshots (Figure 4.4) to show that the model

does not memorize the dataset. Indeed, the MAPE is higher when calculated between this

prediction and the previous snapshots. Figure 4.5 shows the mean density as a function

of R and θ, indicating that the prediction from the model reproduces well the target at

t = 611529 GM/c3.

Figure 4.3: The logarithm of the density of prediction corresponding to the snapshot with gra-

vitational time (t = 611529 GM/c3) compared with the respective target. The metrics between

the two plots are R2 = 0.9988 and MAPE = 2.8%.

We show in Figure 4.6 the MAPE and difference between the target and the prediction

at t = 611529 GM/c3. Both plots do not present discrepancies in the torus region except

a slight MAPE ∼ 0.0005% and ∆log(ρ) ∼ 0.1 difference in outer radii. We can relate this

difference with the lower definition in the outer radii causing the model to learn the large

grid leading to numerical errors. There is a discrepancy at smaller radii near the event

horizon, especially in the higher values of θ. Still, the error in the inner radii has a MAPE

lower than 0.0005% but with a difference of 100.1. These errors do not really challenge

our model, but they can lead to an accumulating error in the iterative forecast. It will

lead to the interpretation that the model does predict the accretion of the black hole well.

However, the model can predict the torus dynamics at larger radii with accuracy, and even

68 Chapter 4. Results

though the atmosphere part presents discrepancies, it is sufficiently small.

Figure 4.4: The MAPE metric between the prediction respective to t = 611529 GM/c3

and other predictions of the same simulation (blue dots) and with the respective ground

truth (orange dot). We aim to show here that there are differences between the frame

t = 611529 GM/c3 and previous ones, i.e., the model does not memorize the dataset.

Figure 4.5: The mean density as a function of Θ (left panel) and R (right panel). The

prediction fits perfectly the ground truth in the mean. The orange dashed line represents the

prediction, while the solid blue line represents the ground truth.

To show the model has similar results at all time t, we fed the whole test set completely

Section 4.1. One simulation 69

Figure 4.6: The left panel shows the mean absolute percentage error (MAPE) between the

prediction and the ground truth. The right panel shows the difference of the logarithm of the

ground truth and prediction (∆log(ρ)).

in the trained model and obtained the predictions, displayed in Figure 4.7. The mean error

between the predictions and their ground truth is MAPE = 2.17%.

Figure 4.7: The MAPE between the prediction and its own ground truth (blue dots). The

solid black line is the mean of the MAPE of all blue dots, MAPE = 2.17%. We have the

maximum error max(MAPE) = 2.73% and the minimum error is min(MAPE) = 0.07%.

In Figure 4.8, we compare the mass with the targets. The highest difference is ∼ 1%.

70 Chapter 4. Results

Here, we are computing the mass of the flow in a subset of the original full grid, therefore

the computed mass is not expected to be conserved to BH accretion and inflow of the gas

from outside the region we chose.

Figure 4.8: The comparison between the mass in the ground truth and the mass in the

prediction. The plot shows that the model can learn the mass in the system within a difference

of ∼ 1%.

• Iterative predictions

We want to test how much the model can generalize by itself. Instead of feeding the

simulations in the model, we feed one simulation (the frame equivalent to the gravitational

time t = 610539 GM/c3) and we iterate the predictions. Our goal here is to understand

until what point in time the model can generalize well from what is has learned.

In Figure 4.9, we show the results after iterating the predictions 10 steps, 50 steps,

and 100 steps in the future, equivalent to ∆t = 612519 GM/c3, ∆t = 660032 GM/c3

and ∆t = 709524 GM/c3, respectively. After each iteration, the error is increasing, and

it becomes evident near the event horizon region. In the previous analysis, we see that

the model’s prediction is lower in that region, so this error accumulates. Another issue

is that the predictions distort the torus, i.e., the model has too much diffusion near the

boundaries of the torus. An interesting aspect is that the model’s results still maintain

globally consistent densities: the densities decreases outwards. Larger R have lower spatial

resolution and the model learned this.

Section 4.1. One simulation 71

Figure 4.9: The density state for three distinct times. The first one is 10 steps in the future,

the second one is 50 steps, and the third one is 100 steps. The ∆t is close to ∼ 100000 GM/c3.

The first row shows the target while in the second row is the respective prediction. In the

last row, we plot the difference between the first two ones.

In Figure 4.10, we show the mean density as a function of time. The model predicts well

the mean density until t ∼ 680000 GM/c3. After that point, the density starts increasing

exponentially at smaller radii and near the event horizon. This may indicate that the

model is not learning well the mass accretion rate. Since the model cannot deal with

larger values of the density, it increases the density in that region.

We plot the mass evolution in figure 4.11. While the region with R > 50Rs increases

the mass slowly, the one at R < 50Rs exponentially increases the mass. We compare the

prediction with the target for all the grid in the right panel. While it preserves the mass,

in the beginning, it rapidly exploded after t ∼ 680000 GM/c3, the same point the model

fails in the inner radii. Figure 4.12 shows the MAE between the mass comparison.

72 Chapter 4. Results

Figure 4.10: The mean density in θ (left panel) and R (right panel) in the function of the time. The

model well predicts the mean until t ∼ 680000 GM/c3. The error is < 20% until the region near the event

horizon exploded.

Figure 4.11: In the first panel we show the mass in two regions: R < 50Rs and R > 50Rs.

The region R < 50Rs increases the mass, the mass is not conserved in these regions. The

model does not fit the high region densities well. Meanwhile, the region R > 50Rs has a slow

increase in the mass. The comparison of the prediction with the target for all the grid is in

the right panel.

4.2 All simulations

Now, we will apply the same analysis to the model trained on all simulations of (Almeida

and Nemmen, 2020). We give new input to the model based on the treatment in Wang

et al. (2020). As in Wang et al. (2020), we concatenate the vector ~x at the start of the

decoder part. The ~x will have information on the angular momentum profile, viscosity,

and α. The vector ~x is defined as:

~x = (A,B,C)

Section 4.2. All simulations 73

Figure 4.12: The MAE between the predictions and the respective ground truth. The error

increases slightly until it reaches t ∼ 680000 GM/c3. After t ∼ 680000 GM/c3, the MAE

increases indicating the model increases the density values.

where the following rules set the values of A, B and C:

• If the angular momentum profile is PN then A = 0, if it is PL then A = 1.

• If the viscosity profile is ST then B = 0, if it is SS then B = 1.

• The α is normalized: if α is 0.3 then C = 1, if α is 0.1 then C = 0.3 and if α is 0.01

then C = 0.

In Table 4.1, we show the simulations, their parameters and the cropped number of

snapshots. We crop the dataset such that all simulations are with the similar number of

frames, and then the model sees all simulations somehow equally.

Table 4.1 - The simulations with the parameters: angular momentum profile, viscosity

profile, and the alpha parameter. In the last column, we show the number of frames used in

the training of each simulation dataset.

Name l(R) ν α # Frames

PNST01 PN ST 0.01 991

PNST1 PN ST 0.1 347

PNSS1 PN SS 0.1 990

PNSS3 PN SS 0.3 990

PL0ST1 PL ST 0.1 171

PL0SS3 PL SS 0.3 709

74 Chapter 4. Results

Table 4.1 - Continuation

Name l(R) ν α # Frames

PL2SS1 PL SS 0.1 763

PL2SS3 PL SS 0.3 763

In the training part, we feed all simulations with the output being the five frames

ahead except for PL0SS3. We hid the PL0SS3 to see how the model would perform with

unseen parameters and unseen data. As in the previous section, we will separate this in

two subsections: the direct predictions and iterative predictions. The architecture is still

the same except for the ~x input described above.

• Direct predictions

In Figure 4.13 and Figure 4.14, we show the predictions after we feed the model with a

frame of 10 steps after the end of each training set. While the model can predict and learn

well the systems that have a stationary behavior, it fails in predicting large variability.

For instance, PNST1 and PNST01 are both simulations showing high variability, so this

model fails to learn a feature that changes continuously. However, the model can learn

the torus geometry and density behavior well. It can predict a large torus with a higher

density (PL2SS3) and a small torus with a gradient of density values (PNSS3). To simplify

the analysis, we will now discuss the results of PNST1 and the PL0SS3, since the first one

shows a significant difference and the second one is the simulation the model did not

see before. Given that PL0SS3 was not part of the training set, by analysing it we can

understand the generalization power of the model.

Figure 4.15 shows the difference between the log(ρ) of the target and prediction for

10, 25, and 50 frames in the future. PL0SS3 does not present any prominent discrepancy

even though the model does not learn with it. PNST1 shows higher differences due to

the turbulent nature of this system. However, the largest disparity in the PNST1 is in

the order of 100.2 in the boundary of the torus. In Figure 4.16, we show the the mass

in function of time for PNST1 and PL0SS3. To predict PL0SS3 increases the mass by a

factor of 100.02 and besides the PNST1 presenting turbulence, the model can understand

how the mass varies.

Section 4.2. All simulations 75

Figure 4.13: This plot is the 10th step after the training stop for all simulations. Each

simulation has different gravitational time in the 10th step, but the ∆t = 1979.7 GM/c3 is

the same for all of them. The density profile of the target and the prediction as well as the

difference ∆ = |Target−Prediction| plot of four systems. The PNSS3 system is the one that

we described alone in the previous section.

The model can predict the PL0SS3 well even this simulation was not fed during the

learning process. For this reason and to quantify how much it generalizes, we will present

the results in the iterative process for PL0SS3.

• Iterative process

Figure 4.17 shows the predictions of the PL0SS3 for gravitational time 50680 GM/c3,

65528 GM/c3, and 90274 GM/c3, respectively. The difference is prominent for higher va-

lues of θ, and lower radii. Though, it predicts the torus without any particular discrepancy

between the target and the prediction. The model extrapolates the region near the black

hole’s event horizon, it decreases the density, and it causes the mass to distinguish, as

76 Chapter 4. Results

Figure 4.14: The continuation of 4.13 plot. Each simulation has different gravitational time

in the 10th step, but the ∆t = 1979.7 GM/c3 is the same for all of them. The density profile

of the target and the prediction as well as the difference ∆ = |Target−Prediction| plot. The

PL0SS3 was not fed to the model in the training part, so the model is predicting it after

learning the other seven simulations with their respective parameters.

shown in Figure 4.18. The reason is also that the model did not learn from thick torus

like PL0SS3. Still, the problem is similar to the one simulation problem: the model fails

to predict near the black hole’s event horizon. It indicates that we may need to constrain

the accretion rate in future work.

We show in Figure 4.19 the density mean in θ direction and R in the function of time.

The first panel shows the density mean for θ direction, indicating that the inconsistency is

mostly for higher values of θ. The second panel shows that the inconsistency is for smaller

radii suggesting that the model fails when predicting near the black hole. It may be due

to be a small region in comparison with the rest of the system.

However, we see the model fails in some regions and with turbulent simulations. One

Section 4.3. GANs 77

Figure 4.15: The differences for 10, 25 and 50 frames in the future for PL0SS3 and PNST1.

Figure 4.16: The mass analysis of PL0SS3 and PNST1. The mass of PL0SS3 presents a

difference of factor 100.02. The PNST1 presents a similar curve between predictions and

targets.

reason may be the loss function that not contemplate the complexity of the systems. We

want to propose in the next section another DL method that may learn the ideal loss

function for the problem. We will introduce the GANs as well as the results of using these

models to our work.

4.3 GANs

Here, we present the preliminary results of the work with cGANs.

78 Chapter 4. Results

Figure 4.17: The predictions of the PL0SS3 using the iterative scheme. We have the 10, 25,

and 50 steps, equivalent to times 50680 GM/c3, 65528 GM/c3, and 90274 GM/c3 respecti-

vely. ∆ correspons to the difference between the first two columns.

• Data

We use the same simulations as in Section 4.2, but instead of predicting five snapshots

in the future, we feed a vector, and the cGAN generates the density field associated with

that vector. The split is 80% for training, 10% for validation, and 10% for the test. Each

snapshot has a vector of l(R), ν, α and t. We made the inference by feeding the vector in

the trained generator.

• Results

The results are from simulations PL0ST1, PL2SS3, PNSS3, PNST01, and PNST1.

Figure 4.20 shows the results after at a time ∆t = 9898.5GM/c3 has passed. The model

Section 4.3. GANs 79

Figure 4.18: The mass of the target vs the mass of the predictions. The model does not

predict the mass of the system well. It can be explained since the cropped region of all systems

does not have mass conservation due to black hole accretion. The model extrapolates what

it is learned.

predicts well, except for the PNST1, which shows higher variability than the others. We

see the PNST1 presents higher values of ∆ = |Target − Prediction| in the regions that

shows outflows. The outflows changes rapidly through the simulations, becoming a hard-

to-predict behavior for the model.

Figure 4.21 shows the mass of PNSS3 and PNST1. The cGAN misses the mass by

a factor of 100.015 in both systems. While the PNS3 presents a similar mass curve for

prediction and target, the PNST1 shows a different curve. The model to predict the

turbulent behaviour in PNST1.

Figure 4.19: The mean of density in θ (left panel) and R (right panel) in the function of the time. The

model presents problems while predicting for lower R and higher values of θ but it has better prediction

values in comparison of figure 4.11.

80 Chapter 4. Results

Figure 4.20: The results are from simulations PL0ST1, PL2SS3, PNSS3, PNST01, and

PNST1 from the GAN model. All the results are from 50 steps in the future, equivalent to

∆t = 9898.5GM/c3 after the training set is over.

Figure 4.22 shows the PNSS3 mean density for θ and R directions in function of time.

The differences in the plots are not as prominent as in the CNNs results. Since the cGAN

receives as input the vector and does not have an iterative process, the errors do not sum

up during the predictions. In other words, the error is the same for all the outputs since it

does not depend on other predictions. We show the same analysis for the PNST1 in Figure

4.23. Even though the chaotic character of the system, the density mean of the prediction

follows somehow the same profile of the target.

Since the cGANs can generate the density profiles right after receiving the parameters,

this is a useful tool to obtain new density profiles with new settings without needing to

Section 4.4. Speed-Up 81

Figure 4.21: The panels shows the log(M). The PNSS3 predictions follow the same behavior

of the target with a difference of 100.015. The PNST1 does not maintain the same behavior,

but the highest contrast is also 100.015.

Figure 4.22: The PNSS3 density mean in θ (left panel) and R (right panel) in the function of the time

for the cGAN. The cGAN’s results are softer than the CNN’s results. It does not present any significant

contrast, as in the previous results.

simulate. The speed-up of the cGANs is similar to the CNNs. But the advantage is

that since the next prediction does not depend on the previous one, the error does not

accumulate during the predictions.

4.4 Speed-Up

Here we will expand the results of the speed-up achieved in our work. In Table 4.2, we

show the resources used in our work to train the model and to predict.

82 Chapter 4. Results

Figure 4.23: The PNST1 density mean in θ (left panel) and in R (right panel) in the function of the time

for the cGAN. Even though it presents differences between the prediction – that is slightly softer than the

target – the model still maintain the density mean profile.

Table 4.2 - The resources we use in our works are listed below.

Resource TFLOPS Cores

Quadro P6000 12.60 3840

Quadro GP100 10.34 3584

Almeida and Nemmen (2020) simulated the dataset using 400 cores and 7.6 TFLOPS

from the AGUIA cluster containing Intel Xeon E7- 2870 CPUs. Each snapshot took 141

seconds to create in the numerical simulations.

Section 4.4. Speed-Up 83

Basing on the resources described, we will show the speed-up for the one simulation

case and all simulations case.

• One simulation

The model for one simulation case can predict the system with physical accuracy until

t ∼ 680000 GM/c3, we want to explore the speed-up obtained using the DL method until

that point. In other words, we will compare how much time each method takes to simulate

until t ∼ 680000 GM/c3. In Figure 4.24, we show the bars comparing the time of each

method. In A is considering the training time, B is when we already have a trained model.

In the case where we do not consider the training time, the speed-up here is ∼ 104.5×. If

we have a trained model, the model will get in only 15 seconds the same results, that a

simulation would take five days.

Figure 4.24: Duration of regular simulation and DL model. A shows the result when consi-

dering the training time, this is a 38x speed-up. If we have a trained model as in B, there is

a 32289x speed-up.

Since the computational resources affect the running speed, it is useful to compare the

CPU-hours and the FLOP between the DL and the simulation. We show the comparisons

in both plots of the Figure 4.25. Like in the previous plot, A is the time considering the

training time, B is when we already have a trained model.

• All simulations

With all simulations, the results of a prediction from a single system are similar to the

previous ones. The new result here is to consider the speed-up of PL0SS3 since the model

84 Chapter 4. Results

Figure 4.25: Temporal comparison the simulations in simulation and in DL model. In the first panel,

we compare the CPU-hours between both methods. In the second panel, we compare the FLOP num-

ber between them. A means the comparison when considering the training time + test time and B is

considering only the test time.

simulates it without seeing it before. In Figure 4.26, we compare the simulation time with

DL time. A shows the comparison considering the training time, B without considering the

training, and C is comparing only the PL0SS3 simulation if we have a model trained able

to predict it alone. Figure 4.27 shows the results using CPU-hours and FLOP numbers.

Figure 4.26: Duration of all simulations and DL model. A shows the result when considering

the training time, this is a ∼ 102.1 speed-up. B shows without considering the training time,

with a ∼ 104.5 speed-up. C is the case with only PL0SS3, giving a ∼ 102.4 speed-up.

Section 4.4. Speed-Up 85

Figure 4.27: Processing time comparison the simulations in simulation and in DL model for all simulations.

In the first panel, we compare the CPU-hours between both methods. In the second panel, we compare

the FLOP number between them. A means the comparison when considering the training time + test

time, B is considering only the test time, and C considering only the PL0SS3 simulation.

Chapter 5

Discussion

Here, we will discuss the results presented in the previous chapter. We start by dis-

cussing the results of “one simulation model” in section 5.1. In section 5.2, we discuss the

trained model that takes into account all simulations. We briefly discuss the results of the

GANs work in section 5.3.

5.1 One simulation

We trained the model for one system only – PNSS3. In the direct prediction, we

conclude that the model can predict well after we feed a simulated snapshot to it. It

returns the torus’ structure and the density values with an R2 = 0.9988. But we found

two main issues:

(i) At higher radii, the predictions present the formation of an anomalous structure in

the polar direction.

(ii) We see the atmosphere presents variations higher than the torus when we calculate

the difference between prediction and simulation.

The (i) is due to the poor resolution of the original simulation at the outer radii. As we

see in figure 2.3, the inner radii have higher resolution than the outer ones. We have more

cells in the inner region, and this is more information on CNNs. The opposite happens

at the high radii, because we have fewer cells, leading to less information. We can solve

this by feeding data with similar and high-resolution in all grid. Another possibility is

to propose the use of other techniques such as GlobalMaxPooling (Christlein et al., 2019)

in the encoder or Transpose Convolution (Dumoulin and Visin, 2016) in the decoder.

These techniques may lead to keeping the information accurately in the regions with larger

Section 5.2. All simulations 87

and fewer cells. The (ii) is because the values of the atmosphere are small, even with

normalization and the fact that we set low loss’ weights in this region. It leads to a biased

dataset inclined to learn the higher values of the system. The atmosphere defines the

boundaries of the torus, and it plays an important role when we deal with winds and

diffusion in this region. But in this case, the system is stationary without much variability

in the boundaries.

For the “one simulation model”, the error in the atmosphere becomes a problem in

the iterative process. In the iterative process, the torus starts to lose its structure in the

boundaries getting a triangular-like aspect. It indicates the problem in the loss function

to contemplate every aspect of the system. We need another loss function, as we proposed

in the “all simulations case” and the cGANs.

In the iterative process, the issues (i) and (ii) got worse, and there is an additional (iii)

issue:

(iii) The region near the event horizon increases the density after each iteration that

raises the error to 102.

This also leads to an accumulation of mass near the event horizon. It indicates the

model struggles to understand the accretion rate by the black hole. We aim to constrain the

accretion rate in future works using networks such as Lagrangians NNs and Hamiltonians

NNs (Greydanus et al., 2019). The iterative process shows that the errors are summing

after each iteration, so we propose the use of cGANs that do not depend on the previous

snapshot.

5.2 All simulations

Figure 4.13 and figure 4.14 shows the result of the direct predictions from all simula-

tions. The model can predict all the simulations with a lower ∆, except for the PNST1.

PNST1 presents a turbulent behavior, and it has less data in comparison with the other

simulations. The number of data is an essential component in the learning process since

the DL model is data-hungry. Another main aspect is that PNST1 presents high varia-

bility, and the model cannot learn the region that changes fast. Networks such as RNNs

and LSTMs may be techniques to overcome this problem since these are networks created

to deal with time-series and sequences. RNNs and LSTMs present results in predicting

88 Chapter 5. Discussion

turbulence, as seen in the work of Pathak et al. (2018) and Mohan et al. (2019). GNNs

are also new techniques to deal with fluid dynamics, as proposed in the work of Cranmer

et al. (2020). We suggest the use of these techniques as well as hybrid models in future

work.

The “all simulations case” motivated us to see how the trained model behaves with a

never-seen system. We feed the PL0SS3 to the model and iterate the results to see how the

model simulates the system by itself. The iteration confirms (ii) and (iii) issues: the model

struggles to learn the atmosphere and the accretion rate misleading when predicting near

the event horizon. It that the learned mass evolution does not follow the simulation. The

model decreases the density during the iteration, causing the loss of the mass. Although

we base the loss function in the density values, the loss still does not contemplate the

density of lower radii properly. It indicates the loss does not consider the accretion rate

well, so that it may need a new loss. Except for the lower radii, the model can predict

other regions of the torus well for a never seen system before. The solutions proposed,

such as constrain the accretion rate and the use of a new loss function, hold here. Also, it

is interesting to feed more simulated data to the model since we only trained with seven

simulations — 7 different initial conditions.

We see that we need an appropriate loss function that can contemplate the complexity

of the problem. In the one simulation case, we use a geometrically based loss, and in all

simulations case, we use a density-based loss function. To find an appropriate loss is not

an easy task, so we propose the use of cGANs since the discriminator acts as a loss, and

it can learn with the data. In this case, we do not need to specify a loss.

5.3 cGANs

Figure 4.20 presents the preliminary results of the cGANs. We feed a parameter vector

to the model, and it generates a density field. After feeding a set of parameters that are

consecutive in time, we obtain the mass profile for both simulations in figure 4.21, as well

as the density mean in figure 4.22 for PNSS3 and figure 4.23. With those results, we see

that cGANs show as a promising DL model to simulate black holes. The main advantage

of using cGANs is the presence of a discriminator, as well as the results, do not depend on

the previous one, i.e., the errors do not sum up during the iterative process.

Section 5.3. cGANs 89

As shown in the plots of Cartesian-coordinates and of the density mean, we see that

cGANs return the system evolution more similar to the simulations than the previous

networks. This result is mainly due to the discriminator that can learn the properties of

each system differently of the fixed loss function in the CNNs. However, mass evolution

is still an issue even to the cGANs. We need to propose a constrain in the accretion rate

of the model and the mass conservation. We also suggest the use of a hybrid model that

combines cGANs with LSTMs.

Chapter 6

Conclusions

In this work, we proposed a DL method that could learn the physics of an accretion flow

around a black hole, i.e., make black hole weather forecasting from a simulated dataset.

We proposed a CNN architecture fed with one simulation at first and then, fed with seven

simulations. The CNN could predict the future states correctly until t ∼ 680000 GM/c3 in

the case for “one simulation”. In the “seven simulation”case, it could predict a never-seen

system, showing some discrepancies in the atmosphere at lower radii. We also proposed

the use of cGANs to simulate the system since the cGANs do not need a customized loss

function, and the errors do not accumulate during the iterative process.

We feed our model with simulated data from Almeida and Nemmen (2020). In their

work, they performed HD simulations of BH accretion flow in the RIAF mode. They inves-

tigated how the properties such as angular momentum profile and the viscosity affect the

flow. Motivated by recent interest in exploring ML, data-driven techniques for modeling

spatiotemporally chaotic systems (Pathak et al., 2018; Mohan et al., 2019), we proposed

to use DL technique to perform HD simulations of a BH accretion flow in the RIAF mode.

Our goal was to obtain a DL model capable of learning and predict future states of the

system after learning from observations of the data. Our dataset is 400 × 200 arrays, so

it indicates to used CNNs as our leading architecture. We treated the problem as a com-

puter vision problem: each matrix of density can be interpreted as an image matrix of

256× 192× 1. We also considered the channels as a temporal axis creating a 256× 192× 5

array. The main conclusions are:

(i) For the models, we found that the CNNs approach was able to forecast well the

system for a duration of ∆t ∼ 80000GM/c3. During this period, the maximum difference

Chapter 6. Conclusions 91

is ∆log(ρ) = 2. The error builds up and becomes ∆log(ρ) = 12 after the time mentioned

above.

(ii) For the GAN approach, we found that this approach was able to forecast the system

well for a duration of ∆t ∼ 100000GM/c3. During this period, the maximum difference

is ∆log(ρ) = 3 in the atmosphere and ∆log(ρ) = 0.4 in the torus. The error is constant

during the entire prediction for the PNSS3 system. In the case of PNST1, the maximum

difference is ∆log(ρ) = 0.75.

(iii) We found some shortcomings with the approach: excessive diffusion and the dis-

tortion of the geometry of accretion flow. We believe this is due to a biased dataset and

low weights in the loss function.

(iv) Our approach is promising for generalizing for a never before seen system. For

instance, when we feed all the simulations, we could predict an unseen system only with

observations of other systems. The model could correctly predict the PL0SS3 system for

∆t ∼ 40000 GM/c3 without seeing it before. The maximum difference is ∆log(ρ) = 1

during the iterative process.

(v) We also obtain a 32289x speed-up using DL method — considering only the time

to achieve the results and we heave a trained model available. The speed-up considering

the training time is 38x. But when comparing the CPU-hours, we get a 1736x speed-up

and a 2x speed-up considering training time. In this work, we used two GPUs: Quadro

P6000 and Quadro GP100, with 3840 and 3584 CUDA-cores, respectively.

(vi) In “all simulations”case, we obtain a 104.46x speed-up in practice — considering

only the prediction time. Considering the training time, we obtain a 102.1x speed-up. But

when comparing the CPU-hours, we get a 103.2x speed-up and a 100.82x speed-up conside-

ring training time.

In conclusion, we believe that a data-driven, equations-free ML approach is very pro-

mising. It could potentially be a faster alternative to directly solving the nonlinear partial

92 Chapter 6. Conclusions

differential equations that correspond to the conservation laws of the flow.

6.1 Future Perspectives

In this section, we delineate future directions for work in this field which if pursued

should improve the performance of the learning models. They are divided in the following

categories: (i) generate more and better training data, (ii) explore other neural network

architectures, better adapted for time-domain studies and (iii) improve the loss function,

and (iv) investigate in more details the generalization properties of the learned models.

Below, we develop these directions in more details:

(i) Generate more — and better — training data and few-shot learning

The DL method usually benefits from a larger dataset. Generating more data is a

direction to have a better performance of such models as CNNs and cGANs. Also, the

quality of data must be taken into consideration since, in our model, we see that the

poor resolution at outer radii presents a limitation. However, few-shot learning techniques

are increasing in the DL field. Few-shot learning techniques are useful when only a few

examples are available (Sung et al., 2017). Recently, Brown et al. (2020) proposed to use

few-shot learning in the natural languagem processing (NLP) field, creating a powerful

tool called generative pre-training transformer (GPT-3). The GPT-3 benefits from few-

shot learning, and it is already used to NLP problems such as generating architecture by

itself and creating human-level stories. We suggest the use of few-shot learning techniques

to simulate accretion flows.

(ii) Explore other neural network architectures, better adapted for time-

domain studies

To deal with time-series problems, RNNs may be a better option. Originally, RNNs

were proposed to NLP problems, since the sentences depend on previous words. RNNs

present gates that learn the sequences and the prediction depend on previous information.

Here, we suggest some of networks:

• LSTMs: The long short term memory networks (LSTMs) are networks widely used

in NLP and to forecast time-series problems (Gers et al., 2002; Wen et al., 2015). It

Section 6.1. Future Perspectives 93

is a possible tool to make physical forecasting, especially the Conv2DLSTMs (Karim

et al., 2018) that are combinations of CNNs and LSTMs. Th main difference that

LSTMs bring is because it is composed of gates: learning/output gate, state gate

and forget gate. Those gates combined can remember features of previous data and

it may be possible to forget useless information for the learning process.

• Attention: the attention network was proposed by (Vaswani et al., 2017) and has

attention modules as well as channels that would “pay attention” to certain regions

of the data. It is also possible to create hybrid-models such as combinations of

Attention with LSTMs (Bin et al., 2019).

• GANs: we used a GAN as a test in this project and it already shows encouraging

results. As explained above, GANs are useful when we do not have a loss that is able

to contemplate the complexity of the systems and the error does not sum up in. So

a hybrid-model as GANs combination with LSTMs and Attentions may contemplate

the complexity of the system.

(iii) Improve the loss function

One of the main issues we found in our work is the loss function. We needed a loss

function able to contemplate all the configurations and the regions of the system. To solve

that, we proposed two loss functions, but both presented limitations. To get better results,

we need a function that can interpret all regions of the system. However, such function

may not exist or can be too complex to use. We proposed the use of networks that does

not need a specific loss function, such as cGANs.

(iv) Investigate in more details the generalization properties of the learned

models

A goal is to obtain a model that can generalize better what it learns. Also, we aim

to use more realistic configurations of accretion flows. We want to test the ability of the

model to learn GRMHD models. It is worth investigating the ability to predict GRMHD

models to quantify how much of the black hole physics the DL models can learn. GRMHD

systems are complex and present turbulence due to the presence of magnetic fields, and

they can explain the formation of jets.

Bibliography

Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S.,

Irving G., Isard M., et al., Tensorflow: A system for large-scale machine learning , 2016,

p. 265

Abbott B. P., Abbott R., Abbott T. D., Abernathy M. R., Acernese F., Observation of

Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett., 2016, vol. 116,

p. 061102

Abramowicz M. A., Fragile P. C., Foundations of Black Hole Accretion Disk Theory, Living

Reviews in Relativity, 2013, vol. 16, p. 1

Akeret J., Chang C., Lucchi A., Refregier A., Radio frequency interference mitigation using

deep convolutional neural networks, Astronomy and Computing, 2017, vol. 18, p. 35

Almeida I., Nemmen R., Winds and feedback from supermassive black holes accreting at

low rates: hydrodynamical treatment, MNRAS, 2020, vol. 492, p. 2553

Balbus S. A., Enhanced Angular Momentum Transport in Accretion Disks, ARA&A, 2003

Balbus S. A., Hawley J. F., A Powerful Local Shear Instability in Weakly Magnetized

Disks. I. Linear Analysis, ApJ, 1991, vol. 376, p. 214

Beckman J. E., The Nearest Active Galaxies, 1993

Bellman R., Dynamic programming, Science, 1966, vol. 153, p. 34

Bin Y., Yang Y., Shen F., Xie N., Shen H. T., Li X., Describing Video With Attention-

Based Bidirectional LSTM, IEEE Transactions on Cybernetics, 2019, vol. 49, p. 2631

Bibliography 95

Blandford R. D., Znajek R. L., Electromagnetic extraction of energy from Kerr black

holes., MNRAS, 1977, vol. 179, p. 433

Bolton C. T., Identification of Cygnus X-1 with HDE 226868, Nature, 1972, vol. 235, p.

271

Breen P. G., Foley C. N., Boekholt T., Portegies Zwart S., Newton versus the machine:

solving the chaotic three-body problem using deep neural networks, MNRAS, 2020,

vol. 494, p. 2465

Brown T., Mann B., Ryder N., Subbiah M., Language Models are Few-Shot Learners, 2020

Chollet F., et al.,, 2015 keras

Christlein V., Spranger L., Seuret M., Nicolaou A., KrÃ¡l P., Maier A., Deep Generalized

Max Pooling, 2019

Çiçek Ö., Abdulkadir A., Lienkamp S. S., Brox T., Ronneberger O., 3D U-Net: Lear-

ning Dense Volumetric Segmentation from Sparse Annotation , Springer International

Publishing, Cham, 2016, p. 424

Cranmer M., Greydanus S., Hoyer S., Battaglia P., Spergel D., Ho S., Lagrangian Neural

Networks, 2020

de Oliveira L., Paganini M., Nachman B., Learning Particle Physics by Example: Location-

Aware Generative Adversarial Networks for Physics Synthesis, Computing and Software

for Big Science, 2017, vol. 1

De Villiers J., Hawley J. F., Three dimensional Hydrodynamic Simulations of Accretion

Tori in Kerr Spacetimes, The Astrophysical Journal, 2002, vol. 577, p. 866

Draper N., Smith H., Applied regression analysis. Wiley series in probability and mathe-

matical statistics, Wiley, 1966

Dumoulin V., Visin F., A guide to convolution arithmetic for deep learning, 2016

Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The

Shadow of the Supermassive Black Hole, ApJ, 2019, vol. 875, p. L1

96 Bibliography

Fabbro S., Venn K. A., O’Briain T., Bialek S., Kielty C. L., Jahandar F., Monty S., An

application of deep learning in the analysis of stellar spectra, MNRAS, 2017, vol. 475,

p. 2978

Ferrarese L., Ford H., Supermassive Black Holes in Galactic Nuclei: Past, Present and

Future Research, Space Sci. Rev., 2005, vol. 116, p. 523

Fragile P. C., Anninos P., Hydrodynamic Simulations of Tilted Thick Disk Accretion onto

a Kerr Black Hole, The Astrophysical Journal, 2005, vol. 623, p. 347

Frank J., King A., Raine D., Accretion Power in Astrophysics. Cambridge University Press,

2002

Gensler A., Henze J., Sick B., Raabe N., Deep Learning for solar power forecasting â An

approach using AutoEncoder and LSTM Neural Networks , 2016, p. 002858

Gers F. A., Eck D., Schmidhuber J., Applying LSTM to Time Series Predictable Through

Time-Window Approaches , Springer London, 2002

Gilfanov M., X-Ray Emission from Black-Hole Binaries. vol. 794, 2010, 17

Goldsmith J., An algorithm for the unsupervised learning of morphology, Natural Language

Engineering, 2006, vol. 12, p. 353

Goodfellow I., Bengio Y., Courville A., Deep Learning. The MIT Press, 2016

Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville

A., Bengio Y., Generative Adversarial Nets , NIPS14, MIT Press, Cambridge, MA,

USA, 2014, p. 2672

Gopinath R., Burrus C., On Upsampling, Downsampling, and Rational Sampling Rate

Filter Banks, Trans. Sig. Proc., 1994, vol. 42, p. 812

Greydanus S., Dzamba M., Yosinski J., Hamiltonian Neural Networks, 2019

Grover A., Kapoor A., Horvitz E., A Deep Hybrid Model for Weather Forecasting , 2015,

p. 379

Hausen R., Robertson B., Morpheus: A Deep Learning Framework For Pixel-Level Analysis

of Astronomical Image Data, 2019

Bibliography 97

He S., Li Y., Feng Y., Ho S., Ravanbakhsh S., Chen W., Póczos B., Learning to predict

the cosmological structure formation, Proceedings of the National Academy of Sciences,

2019, vol. 116, p. 13825

Hon M., Stello D., Yu J., Deep learning classification in asteroseismology, MNRAS, 2017,

vol. 469, p. 4578

Huertas-Company M., Rodriguez-Gomez V., Nelson D., Pillepich A., Bottrell C., Bernardi

M., Dominguez-Sanchez H., Genel S., Pakmor R., Snyder G. F., Vogelsberger M., The

Hubble Sequence at z ∼ 0 in the IllustrisTNG simulation with deep learning, MNRAS,

2019, vol. 489, p. 1859

Igumenshchev I. V., Abramowicz M. A., Narayan R., Numerical Simulations of Convective

Accretion Flows in Three Dimensions, The Astrophysical Journal, 2000, vol. 537, p. L27

Isola P., Zhu J. Y., Zhou T., Efros A. A., Image-to-Image Translation with Conditional

Adversarial Networks, 2016

Jain P., Meka R., Dhillon I. S., Simultaneous Unsupervised Learning of Disparate Cluste-

rings, Stat. Anal. Data Min., 2008, vol. 1, p. 195

Karim F., Majumdar S., Darabi H., Chen S., LSTM Fully Convolutional Networks for

Time Series Classification, IEEE Access, 2018, vol. 6, p. 1662

Kerr R. P., Gravitational Field of a Spinning Mass as an Example of Algebraically Special

Metrics, Phys. Rev. Lett., 1963, vol. 11, p. 237

King R., Hennigh O., Mohan A., Chertkov M., From Deep to Physics-Informed Learning

of Turbulence: Diagnostics, 2018

Kingma D. P., Ba J., Adam: A Method for Stochastic Optimization, 2014

Kirby M., Geometric Data Analysis: An Empirical Approach to Dimensionality Reduction

and the Study of Patterns. John Wiley Sons, Inc. USA, 2000

Krizhevsky A., Sutskever I., Hinton G. E., ImageNet Classification with Deep Convoluti-

onal Neural Networks, 2012, p. 1097

Landau L. D., Lifshitz E. M., Fluid mechanics, 1959

98 Bibliography

LeCun Y., Bengio Y., Convolutional Networks for Images, Speech, and Time Series, 1998,

p. 255

Lloyd S., Least squares quantization in PCM, IEEE Transactions on Information Theory,

1982, vol. 28, p. 129

Lukosevicius M., Jaeger H., Reservoir computing approaches to recurrent neural network

training, Computer Science Review, 2009, vol. 3, p. 127

Lydia A., Francis S., Adagrad - An Optimizer for Stochastic Gradient Descent, 2019, vol. 6,

p. 566

McCulloch W. S., Pitts W., A logical calculus of the ideas immanent in nervous activity,

The bulletin of mathematical biophysics, 1943, vol. 5, p. 115

McKinney J. C., Tchekhovskoy A., Blandford R. D., General relativistic magnetohydrody-

namic simulations of magnetically choked accretion flows around black holes, Monthly

Notices of the Royal Astronomical Society, 2012, vol. 423, p. 3083

Mathuriya A., Bard D., Mendygral P., Meadows L., Arnemann J., Shao L., He S., KÃrnÃ

T., Moise D., Pennycook S. J., Maschhoff K., Sewall J., Kumar N., Ho S., Ringenburg

M. F., Prabhat P., Lee V., CosmoFlow: Using Deep Learning to Learn the Universe at

Scale. In SC18: International Conference for High Performance Computing, Networking,

Storage and Analysis , 2018, p. 819

McKinney J. C., Gammie C. F., A Measurement of the Electromagnetic Luminosity of a

Kerr Black Hole, ApJ, 2004, vol. 611, p. 977

McKinney J. C., Narayan R., Disc-jet coupling in black hole accretion systems - I. General

relativistic magnetohydrodynamical models, MNRAS, 2007, vol. 375, p. 513

Meier D. L., Black Hole Astrophysics: The Engine Paradigm. Springer Science Business

Media, 2012

Misner C. W., Thorne K. S., Wheeler J. A., Gravitation. W. H. Freeman San Francisco,

1973

Mohan A., Daniel D., Chertkov M., Livescu D., Compressed Convolutional LSTM: An

Efficient Deep Learning framework to Model High Fidelity 3D Turbulence , 2019

Bibliography 99

Mohan A., Livescu D., Chertkov M., Physics-Constrained Convolutional LSTM Neural

Networks for Generative Modeling of Turbulence. In APS Division of Fluid Dynamics

Meeting Abstracts , APS Meeting Abstracts, 2019, p. C17.002

Moscibrodzka, M. Falcke, H. Noble, S. Scale-invariant radio jets and varying black hole

spin, A&A, 2016, vol. 596, p. A13

Murtagh F., Multilayer perceptrons for classification and regression, Neurocomputing,

1991, vol. 2, p. 183

Nagi J., Ducatelle F., Di Caro G. A., CireÅan D., Meier U., Giusti A., Nagi F., Schmidhu-

ber J., Gambardella L. M., Max-pooling convolutional neural networks for vision-based

hand gesture recognition , 2011, p. 342

Nieto D., Brill A., Feng Q., Humensky T. B., Kim B., Miener T., Mukherjee R., Sevilla

J., CTLearn: Deep Learning for Gamma-ray Astronomy, 2019

Paczyńsky B., Wiita P. J., Thick accretion disks and supercritical luminosities., A&A,

1980, vol. 500, p. 203

Pathak J., Hunt B., Girvan M., Lu Z., Ott E., Model-Free Prediction of Large Spatio-

temporally Chaotic Systems from Data: A Reservoir Computing Approach, Phys. Rev.

Lett., 2018, vol. 120, p. 024102

Pathak J., Wikner A., Fussell R., Chandra S., Hunt B. R., Girvan M., Ott E., Hybrid fo-

recasting of chaotic processes: Using machine learning in conjunction with a knowledge-

based model, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, vol. 28,

p. 041101

Pearson W. J., Wang, L. Trayford, J. W. Petrillo, C. E. van der Tak, F. F. S. Identifying

galaxy mergers in observations and simulations with deep learning, A&A, 2019, vol. 626,

p. A49

Penna R. F., Kulkarni, Akshay Narayan, Ramesh A new equilibrium torus solution and

GRMHD initial conditions, A&A, 2013, vol. 559, p. A116

Penrose R., Gravitational Collapse: the Role of General Relativity, Nuovo Cimento Rivista

Serie, 1969, vol. 1, p. 252

100 Bibliography

Perraudin N., Srivastava A., Lucchi A., Kacprzak T., Hofmann T., Refregier A., Cosmo-

logical N-body simulations: a challenge for scalable generative models, 2019

Podareanu D., Codreanu V., Aigner S., Leeuwen C., Weinberg V., Best Practice Guide -

Deep Learning, 2019

Porth O., et al., The Event Horizon General Relativistic Magnetohydrodynamic Code

Comparison Project, Astrophys. J. Suppl., 2019, vol. 243, p. 26

Prechelt L., Early Stopping-But When? , Springer-Verlag, Berlin, Heidelberg, 1998, p. 55

Proga D., Begelman M. C., Accretion of Low Angular Momentum Material onto Black Ho-

les: Two-dimensional Hydrodynamical Inviscid Case, The Astrophysical Journal, 2003,

vol. 582, p. 69

Qiao T., Zhang J., Xu D., Tao D., MirrorGAN: Learning Text-to-image Generation by

Redescription, 2019

Reed S., Akata Z., Yan X., Logeswaran L., Schiele B., Lee H., Generative Adversarial Text

to Image Synthesis, 2016

Rezaie M., Seo H.-J., Ross A. J., Bunescu R. C., Improving Galaxy Clustering Measure-

ments with Deep Learning: analysis of the DECaLS DR7 data, 2019

Ribli D., Ãrmin Pataki B., Csabai I., An improved cosmological parameter inference scheme

motivated by deep learning, 2018

Ronneberger O., Fischer P., Brox T., U-Net: Convolutional Networks for Biomedical Image

Segmentation, 2015

Rosenblatt F., Perceptron Simulation Experiments, Proceedings of the IRE, 1960, vol. 48,

p. 301

Roy N., Bundy K., Cheung E., Rujopakarn W., Cappellari M., Detecting Radio AGN

Signatures in Red Geysers., 2018

Ruder S., An overview of gradient descent optimization algorithms, 2016

Bibliography 101

Salian I., , 2018 SuperVize Me: What is the Difference Between Supervised, Unsuper-

vised, Semi-Supervised and Reinforcement Learning? https://blogs.nvidia.com/

blog/2018/08/02/supervised-unsupervised-learning/

Schawinski K., Zhang C., Zhang H., Fowler L., Santhanam G. K., Generative adversarial

networks recover features in astrophysical images of galaxies beyond the deconvolution

limit, MNRAS, 2017, vol. 467, p. L110

Schmidt M., 3C 273 : A Star-Like Object with Large Red-Shift, Nature, 1963, vol. 197, p.

1040

Schodel R., et al., A Star in a 15.2 year orbit around the supermassive black hole at the

center of the Milky Way, Nature, 2002, vol. 419, p. 694

Shakura N. I., Sunyaev R. A., Black holes in binary systems. Observational appearance.,

A&A, 1973, vol. 500, p. 33

Shallue C. J., Vanderburg A., Identifying Exoplanets with Deep Learning: A Five-planet

Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90, The Astro-

nomical Journal, 2018, vol. 155, p. 94

Siemiginowska A., Eadie G., Czekala I., Feigelson E., The Next Decade of Astroinformatics

and Astrostatistics, 2019

Silver D., Huang A., Maddison C., Guez A., Sifre L., Driessche G. v. d., Schrittwieser J.,

Antonoglou I., Panneershelvam V., Mastering the game of Go with deep neural networks

and tree search, Nature, 2016

Stone J. M., Pringle J. E., Magnetohydrodynamical non-radiative accretion flows in two

dimensions, MNRAS, 2001, vol. 322, p. 461

Stone J. M., Pringle J. E., Begelman M. C., Hydrodynamical non-radiative accretion flows

in two dimensions, MNRAS, 1999, vol. 310, p. 1002

Sung F., Yang Y., Zhang L., Xiang T., Torr P. H. S., Hospedales T. M., Learning to

Compare: Relation Network for Few-Shot Learning, 2017

Tchekhovskoy A., McKinney J. C., Prograde and retrograde black holes: whose jet is more

powerful?, MNRAS, 2012, vol. 423, p. L55

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning/

102 Bibliography

Turner N., Stone J., Krolik J., Sano T., Local three-dimensional simulations of magneto-

rotational instability in radiation-dominated accretion disks, Astrophys. J., 2003,

vol. 593, p. 992

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L. u.,

Polosukhin I., Attention is All you Need, 2017, p. 5998

Wagner R. M., Starrfield S., Cassatella A., Gonzalez-Riestra R., Kreidl T. J., Howell S. B.,

Hjellming R. M., Han X.-H., Shrader C., Sonneborn G., The 1989 Outburst of V404

Cygni: A Very Unusual X-Ray Nova, International Astronomical Union Colloquium,

1990, vol. 122, p. 429

Wang Y., Bilinski P., Bremond F. F., Dantcheva A., ImaGINator: Conditional Spatio-

Temporal GAN for Video Generation, 2020

Wen T.-H., Gasic M., Mrksic N., Su P.-H., Vandyke D., Young S., Semantically Conditio-

ned LSTM-based Natural Language Generation for Spoken Dialogue Systems, 2015

Yuan F., Narayan R., Hot Accretion Flows Around Black Holes, ARA&A, 2014, vol. 52,

p. 529

Yuan F., Quataert E., Narayan R., Nonthermal Electrons in Radiatively Inefficient Accre-

tion Flow Models of Sagittarius A*, ApJ, 2003, vol. 598, p. 301

Zeiler M. D., Adadelta: An Adaptive Learning Rate Method, 2012

Appendix

Appendix A

Details

Table A.1 - Here are the split of the dataset. Above each percentage, there is the number

of frames corresponding as well the ∆T (GM/c3) of the range.

Train Validation Test

67.5% 12.5% 20%

1606 frames 178 frames 594 frames

317939GM/c3 34644GM/c3 117594GM/c3

Table A.2 - Hyperparameters found by the grid search method for the one simulation case.

These are the hyperparameters with the best results on the R2 metric during the evaluation

and the best analysis results.

Hyperparameter Values

Batch Size 64

Learning Rate 0.0005

α 8.0

β 5.0

γ 10.0

δ 4.0

106 Appendix A. Details

Table A.3 - Hyperparameters found by the grid search method for the one simulation case.

These are the hyperparameters with the best results on the R2 metric during the evaluation

and the best analysis results.

Hyperparameter Values

Batch Size 64

Learning Rate 0.0005

ρhp 0.8

a 10.0

b 1.0

	Introduction
	Accretion
	Numerical Simulations
	Deep Learning
	Related Work
	This Work

	Astrophysical Dataset
	Numerical Simulations
	Data preparation
	Training, Validation and Testing sets

	Methods
	Neural Networks
	Convolutional Neural Networks
	Architecture
	Hyperparameters
	Inference
	GANs
	Analysis
	Procedure

	Results
	One simulation
	All simulations
	GANs
	Speed-Up

	Discussion
	One simulation
	All simulations
	cGANs

	Conclusions
	Future Perspectives

	Bibliography
	Appendix
	Details

