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Resumo

Amaral, C. A. D. Estudo paleomagnético de rochas Arqueanas da Bahia. 2021.

113pp. Dissertação (Mestrado) - Instituto de Astronomia, Geof́ısica e Ciências Atmosféricas,

Universidade de São Paulo, São Paulo, 2021.

Este estudo realizou uma caracterização da mineralogia magnética, fábrica magnética e

direção paleomagnética em um conjunto de diques máficos não datados (14.15◦S, 40.72◦W)

e em um afloramento de rochas rioĺıticas Arqueanas (13.668◦S, 40.905◦W) no interior do es-

tado da Bahia, Brasil. Os seguintes procedimentos laboratoriais foram realizados: obtenção

de curvas termomagnéticas (variação χ− T ), ciclos de histerese, magnetização remanente

isotérmica (MRI) e curvas de reversão de primeira ordem (FORC), definição da aniso-

tropia de susceptibilidade magnética (ASM) e anisotropia de susceptibilidade magnética

anisterética (AASM) e aplicação de técnicas de desmagnetização térmica e por campos

magnéticos alternados. O principal mineral portador da magnetização em ambos conjun-

tos de rochas é a magnetita de pseudo-domı́nio simples à multidomı́nio, no entanto as

rochas também apresentaram uma grande quantidade de minerais paramagnéticos. O con-

junto de amostras de diques máficos não apresentou resultados satisfatórios para as análises

de anisotropia e paleomagnetismo. A trama magnética dos riolitos apresentou baixos va-

lores de susceptibilidade magnética e de grau de anisotropia (parâmetro P). O corpo como

um todo exibiu um padrão subvertical para Leste, indicando um comportamento coerente

para o fluxo de lava. A caracterização paleomagnética indicou apenas uma componente de

magnetização secundária (Dm = 40.52◦, Im = 4.32◦, α95 = 22.67◦, K = 8.04) apresentando

um polo paleomagnético localizado em 46.82◦N, 30.68◦E (dp = 11.38, dm = 22.72).



Palavras chave: Magnetismo de rocha, fábrica magnética, paleomagnetismo, riolitos

Arqueanos.



Abstract

Amaral, C. A. D. Paleomagnetic study of Bahia Archean rocks 2021. 113pp. Thesis

(Master’s degree) - Institute of Astronomy, Geophysics and Atmospheric Sciences, Univer-

sity of São Paulo, São Paulo, 2021.

This study performed a characterization of the magnetic mineralogy, magnetic fabric and

paleomagnetic direction in a set of undated mafic dikes (14.15◦S, 40.72◦W) and in an out-

crop of Archean rhyolitic rocks (13.668◦S, 40.905◦W) in the interior of the state of Bahia,

Brazil. The following laboratory procedures were performed: obtaining thermomagnetic

curves (χ − T diagram), hysteresis loops, isothermal remanent magnetization (IRM) and

first order reversal curves (FORC), definition of the anisotropy of magnetic susceptibility

(AMS) and anisotropy of anhysteretic magnetic susceptibility (AAMS) and application of

thermal and alternated magnetic fields demagnetization techniques. The main magnetic

carrier in both sets of rocks is the pseudo-single domain to multi-domain magnetite, howe-

ver the rocks also presented a large amount of paramagnetic minerals. The set of mafic

dykes samples did not present satisfactory results for the AMS analysis and paleomagne-

tism direction characterization. The magnetic fabric of the rhyolites presented low values

of magnetic susceptibility and anisotropy degree (P parameter). The outcrop region exhibi-

ted coherent eastward sub-vertical lava flow direction. The paleomagnetic characterization

indicated only one secondary remanence direction (Dm = 40.52◦, Im = 4.32◦, α95 = 22.67◦,

K = 8.04) with a paleomagnetic pole located at 46.82◦N, 30.68◦E (dp = 11.38, dm = 22.72).

Keywords: Rock magnetism, magnetic fabric, paleomagnetism, Archean rhyolite.
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Chapter 1

Introduction

At the beginning of Earth’s history, the planet had distinct characteristics and beha-

viors. The plate tectonics mechanism and the geomagnetic field properties were probably

different than today, also the generation and development of continental crust had its

peculiarities (McElhinny and Senanayake, 1980; Kröner and Layer, 1992; Tarduno et al.,

2007; Hawkesworth et al., 2010, 2016; Smirnov et al., 2016).

One of the best ways to make an attempt to comprehend how the continental crust

behaved itself at the early Earth is by performing a multi-approach study at Archean cra-

tons (Bleeker, 2003; Bleeker and Ernst, 2006; Brenner et al., 2020; Smirnov et al., 2013;

Salminen et al., 2019). Bleeker (2003) defined a supercraton as “a large ancestral landmass

of Archean age with a stabilized core that on break-up spawned several independently drifting

cratons”, the author also proposes that the most probable scenario for the Late Archean

configuration was that existed a limited set of supercratons that originated the present

day known Archean cratons and fragments. Therefore, to study the tectonic evolution

of current Archean cratons it is necessary to analyze the development of the supercraton

that originated them and reliable chronostratigraphic data in order to correlated the Ar-

chean cratons distributed around the world. One of the best tools to make correlation

is the comparison of age and direction of Paleoproterozoic mafic dykes swarms that oc-

curred at the supercratons before their break-up, therefore facilitating its paleogeographic

reconstruction (Bleeker and Ernst, 2006).

The work of Bleeker and Ernst (2006) demonstrated how mafic dyke swarms or rapid

magmatic generation events are key to performe a high quality paleogeographic reconstruc-

tion. According to the authors, a well dated geochronological analyses (with associated

error ≤ 2 Ma), a high quality paleomagnetic study and an integrated mapping of a mafic
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dyke swarm make it possible to located two neighboring cratons with a common point at

the location of the dykes occurrence, ensuring the cratons positions.

Recently, several authors have been performing new studies about Archean paleographic

reconstructions using the approach described above (de Kock et al., 2009; Evans et al.,

2017; Mertanen and Korhonen, 2011; Salminen et al., 2019; D’Agrella-Filho et al., 2020).

Despite the effort, there are very few good quality Precambrian paleomagnetic studies,

even less so in South America (Evans and Pisarevsky, 2008; D’Agrella-Filho and Cordani,

2017).

The São Francisco Craton is composed of Archean to Proterozoic rocks (Almeida, 1977;

Hasui et al., 2012) and has its largest portion situated at Bahia and Minas Gerais states

(Figure 2.1). The Gavião Block represents part of the craton basement and some of the

oldest rocks of South America were found on it (Oliveira et al., 2019). The present work

will seek to characterize new paleomagnetic, anisotropy of magnetic susceptibility and

magnetic mineralogy information of a ∼3.3 Ga rhyolite rocks (Zincone et al., 2016) and

undated dykes that outcrops at Serra dos Meiras.



Chapter 2

Geology

2.1 São Francisco Craton

The São Francisco Craton (Almeida, 1977) is one of the major Brazilian geotectonic

compartments (Hasui et al., 2012) which is mostly located in the Bahia and Minas Gerais

states (Figure 2.1), southeastern and northeastern Brasil respectively, and it is surrounded

by fold belts (Araçuai, Ribeira, Braśılia, Rio Preto, Riacho do Pontal and Sergipano Belts)

that originated during the Brasiliano orogeny (Barbosa et al., 2003; Heilbron et al., 2017;

Teixeira et al., 2000).

The basement of the craton is composed of Paleoproterozoic and Archean rocks (Fi-

gure 2.1) that are exposed in the southernmost part of the craton, in the Quadrilátero

Ferŕıfero region in Minas Gerais state, and in the northeastern part of the craton, in the

Bahia state (Alkmim, 2004; Alkmim and Teixeira, 2017; Barbosa and Barbosa, 2017; Heil-

bron et al., 2017). The northeastern part of the craton consists of gneissic migmatitic

rocks, granulites, granitoids and greenstone belts that outcrops in the Gavião , Jequié and

Serrinha Blocks which are separeted by the Contendas-Jacobina Lineament as shown in

Figure 2.2 (Teixeira et al., 2017). These blocks contain some of the oldest rocks in South

America with ages ranging from ∼2.4 Ga up to ∼3.7 Ga (Barbosa and Sabaté, 2002, 2004;

Martin et al., 1991; Nutman and Cordani, 1993; Nutman et al., 1994; Peucat et al., 2002).

The studies of Barbosa and Sabaté (2002, 2004) explain the main geotectonic pro-

cess that generated the four Archean Blocks of the basement of the craton. According

to the authors, the crustal fragments that originated the Blocks, collided during the Pa-

leoproterozoic Transamazonian Cycle due to a NW-SE sinistral movement. The collision

of Gavião and Serrinha Blocks resulted in the formation of the Itabuna-Salvador-Curaça



24 Chapter 2. Geology

Sã
o	
Fr
an
ci
sc
o	
C
ra
to
n

Q
ua
te
rn
ar
y	
(~
0	
M
a)

Ju
ra
ss
ic
	-	
C
re
ta
ce
ou

s	(
20

0-
65

	M
a)

Pa
le
oz
oi
c	
(5
40

-2
50

	M
a)

N
eo
pr
ot
er
oz
oi
c	
(1
00

0-
70

0	
M
a)

M
es
op

ro
te
ro
zo
ic
	(1

60
0-
10

00
	M

a)

Pa
le
op

ro
te
ro
zo
ic
	(2

50
0-
16

00
	M

a)

La
te
	A
rc
he
an
	(2

80
0-
25

00
	M

a)

Ea
rly

	A
rc
he
an
	(>

28
00

	M
a)

14.50°S14.00°S

40
.9
5°
W

40
.7
4°
W

14.30°S14.20°S14.10°S

40
.8
0°
W

40
.7
0°
W

13.670°S13.668°S13.665°S

40
.9
06
°W

40
.9
04
°W

C
on
te
nd
as
	-	
M
ir
an
te

C
en
oz
oi
c	
C
ov
er

Pa
le
op
ro
te
ro
zo
ic
	G
ra
ni
te

A
ng
ic
o	
G
ro
up

N
eo
ar
ch
ea
n	
G
ra
ni
te

Je
qu
ié
	B
lo
ck

Ju
re
m
a-
Tr
av
es
sã
o	
Fo

rm
at
io
n

G
av
iã
o	
B
lo
ck

R
hy
ol
ite

C
iti
es

Sa
m
pl
es

B
C

A

D

F
ig
u
re

2.
1:

A
-

S
ão

F
ra

n
ci

sc
o

C
ra

to
n

;
B

-
C

on
te

n
d

as
-

M
ir

an
te

re
gi

on
;

C
-

S
am

p
le

lo
ca

ti
on

of
th

e
m

afi
c

d
y
ke

s;
D

-
S

am
p

le
lo

ca
ti

on
of

th
e

rh
y
ol

it
e

(m
o
d

ifi
ed

fr
om

C
or

d
an

i
et

al
.,

2
01

6;
M

ac
êd
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Figure 2.2: Simplified map showing the main geologic Blocks of the northeastern part of the São Francisco

Craton in the Bahia state (modified from Barbosa et al., 2012).

Belt and the collision of the Gavião and Jequié Blocks resulted in the formation of the

Contendas-Mirante Sedimentary Belt and Umburanas Greenstone Belt.

The Gavião Block is composed of Paleoarchean tonalites-trondhjemites-granodiorites

(TTGs) (Condie, 2014; Moyen and Martin, 2012), Meso-Neoarchean granodioritic, gnais-

sic and granitic rocks that could eventually migmatized in anphibolite facies, Archean-

Paleoproterozoic greenstone belts (Barreiro-Colomi, Boquira, Brumado, Guajeru, Ibitira-

Ubiraçaba, Lagoa do Alegre, Mundo Novo, Riacho de Santana, Salitre-Sobradinho, Tiquara

and Umburanas) and volcanic sedimentary belts (Caetité-Lićınio de Almeida, Contendas-

Mirante, Ibiajara and Urandi) (Barbosa and Sabaté, 2002, 2004; Barbosa et al., 2012;

Marinho et al., 1993; Teixeira et al., 2000, 2017).

The Contendas-Mirante Volcanic Sedimentary Belt (CMVSB) is divided into the An-

gico Group (Areião, Santana, Rio Gavião and Mirante Formations), Barreiro D’Anta and

Jurema-Travessão Formations, TTGs domes and Paleoproterozoic-Neoarchean Granitoids

(Marinho et al., 2009) (Figure 2.1). The Jurema-Travessão Formation (JTF) border the
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CMVSB following the contact with the Jequié and Gavião Block and is mainly composed of

metavolcanic and metasedimentary rocks (Leite and Marinho, 2012; Marinho et al., 1993,

1994, 2009). The TTGs nuclei that outcrops in the southern part of the CMVSB are the

Sete Voltas, Boa Vista and Serra dos Meiras massifs which represents the basement of the

Gavião Block that was uplifted during the Paleoproterozoic tectonic events (Marinho et al.,

1993; Martin et al., 1997). The Sete Voltas massif is essentially made of grey gneisses (3.0

- 3.4 Ga), porphyritic granodiorites (∼3.2 Ga) and granitic dykes (∼2.6 Ga) and the Boa

Vista massif is essentially made of granitic rocks (∼3.4 Ga) (Cordani et al., 1985; Marinho

et al., 1993; Martin et al., 1991, 1997; Nutman and Cordani, 1993). The Serra dos Meiras

massif is essentially composed of granodiorites, tonalites and gray gneisses (∼3.4 Ga) and

undated dykes that intrude the dome (Marchesin, 2015).

The Mundo Novo Greenstone Belt (MNGB) is located in the southern sector of the

Serra Jacobina (Mascarenhas and Silva, 1994). The basement of the MNGB is described

as gneisses and migmatized TTGs of the Mairi Complex, the lower units are represented

by mafic-ultramafic rocks of the Saúde Complex and Jacobina Group, the upper units

are composed by the Itapura Complex, Saúde Complex and Mundo Novo Complex and

between these units some mafic and felsic volcanic rocks are exposed (Cunha et al., 2012;

Macêdo, 2016; Martins et al., 2017a,b; Mascarenhas et al., 1998). Peucat et al. (2002)

performed an U-Pb geochronological study on the MNGB in which porphyritic metadacite

samples presented an age of ∼3.3 Ga.

Zincone et al. (2016) studied some rhyolites that are exposed in the MNGB and in

the JTF. The authors established that the samples from both localities are cogenetic, had

the same origin as the Boa Vista and Serra dos Meiras Granites, were formed in a intra-

continent rift system and it still present the primary volcanic features (the samples from

the JTF). Zincone et al. (2016) also made a geochronological and mineralogical studies in

the rhyolites determining an age of ∼3.3 Ga (U-Pb) and that it is mainly composed of

feldspar, quartz, plagioclase, chlorite, biotite and magnetite .

In this work, it will be performed a magnetic mineralogy characterization, a paleomag-

netic analyses and an anisotropy of magnetic susceptibility study in nine sites of the mafic

dykes that occurs in the Serra dos Meiras massif (SJ, SM01-08) and in seven sites of the

non metamorphosed rhyolites of the JTF (CR01-07).
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Methods

3.1 Rock Magnetism

In all known materials the movement of electrons around the atomic nucleus gives rise

to a resultant force (torque) called magnetic moment (m). The relation between the sum

of all magnetic moments and the volume (V ) of the material results in the magnetization

(M) of the material (Lowrie and Fichtner, 2007), as in Equation 3.1 below:

M =

∑
mi

V
(3.1)

The magnetization is the ability of a material to stay magnetized in the presence of a

magnetic field (Griffiths, 1999). The magnetization (M) is given in relation with magnetic

susceptibility (χ) and the magnetic field (H). Another important magnetic property of

materials is the relation between the induction field (B) with M and H (Tauxe et al.,

2018). Both relations are respectively described in the Equation 3.2 and 3.3 below:

M = χH (3.2)

B = µ(H +M) (3.3)

χ defines the ability with which the material is magnetized and µ is the magnetic per-

meability which defines how easily the magnetic flux can go through the material, both

are dimensionless. According with the International System of Units (SI) (Newell and

Tiesinga, 2019): M [Am−1],m[Am2], B[NA−1m−1], H[Am−1], µ0[NA
2], V [m3].

There are three different types of magnetic materials (diamagnetic, paramagnetic and

ferromagnetic), in each type the magnetization has a characteristic behavior (Figure 3.1).

In diamagnetic materials, when a magnetic field (H) is applied, the magnetization (M)
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decreases, this happens because diamagnetic materials have a weak and negative magnetic

susceptibility. Paramagnetic materials have a weak and positive magnetic susceptibility,

therefore when a H field is applied, the magnetization will give a positive response. In

ferromagnetic materials the magnetization has a unique response to the applied H field.

The main characteristics of ferromagnetic substances are that they achieve saturation,

possess an intrinsic coercivity and, mostly important, has a spontaneous magnetization

in the absence of the H field (Dunlop and Özdemir, 1997). They present a spontaneous

magnetization due to the alignment of the atomic magnetic moments according to the

crystaline structure of the solid, the principal manners that it happens is demonstrated in

Figure 3.2.

(a) Diamagnetic-Paramagnetic behavior

M

HHc

coercive force

saturation magnetizationMs

isothermal
remanent

magnetization

Hcr

remanent
coercivity

Mrs

(b) Ferromagnetic behavior

Figure 3.1: Magnetization behavior in differents types of materials (after Lowrie and Fichtner, 2007)

In ferromagnetic particles (e.g. magnetite, hematite), the magnetic spins will tend to

align in a way that the internal energy of the particle is minimum, those types of arran-

gement are known as magnetic domains. Smalls particles will have a single domain (SD)

behavior while a bigger particles will have a multi-domain (MD) behavior, the transition of

SD to MD is known as pseudo-single domain (PSD) and very small particles, with τ < 100s

(Equation 3.5), has a superparamagnetic behavior (Tauxe et al., 2018). Lascu et al. (2018)



Section 3.2. Rock Magnetization Processes 29

spontaneous
magnetic
moment

ferromagnetism ferrimagnetismantiferromagnetism
spin-canted

antiferromagnetism

zero

Figure 3.2: Schematic representation of magnetic moment alignment of ferromagnetic materials (after

Lowrie and Fichtner, 2007)

provided a new perspective in understanding the magnetic domains, by performing a mi-

cromagnetic modeling in which he demonstrated the complexity surrounding the magnetic

domains, specially the PSD domain.

In rock magnetism and paleomagnetism analysis it is important to determine which

minerals composes the studied rock. The most important mineral types for those analysis

are the ferromagnetic minerals which preserve the information of the Earth’s magnetic field

at the time of rock formation. The main magnetic minerals and its principals characteristics

are indicated in Table 3.1 below.

Table 3.1 - Principal properties of the main magnetic minerals.

Ferromagnetic mineral MS [kA/m] TC [◦C] Max TB[◦C] Max Coercivity [T ]

Maghemite (γFe2O3) 380 590 - 675 ≈350 0.3

Hematite (αFe2O3) ≈2.5 675 675 1.5 - 5

Magnetite (Fe3O4) 480 580 575 0.3

Titanomagnetite (Fe2.4Ti0.6O4) ≈125 150 - 200 150 0.1

Titanomagnetite (Fe2.7Ti0.3O4) - ≈400 350 0.2

MS = Spontaneous Magnetization, TC = Curie Temperature, TB = Blocking Temperature (Adapted

from Dunlop and Özdemir, 1997; Lowrie and Fichtner, 2007).

3.2 Rock Magnetization Processes

3.2.1 Thermal Remanent Magnetization

In well preserved igneous rocks, the magnetic information of the rock can be preserved

for millions of years. According to Néel Theory (Néel, 1955), in a assemblage of identical
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SD grains, the magnetization over time (M(t)) will obey the Equation 3.4, where M(0) is the

magnetization of the rock when it was formed and τ is the relaxation time which defines

for how long can the magnetization remain stable (Equation 3.5 from Tauxe et al. (2018)).

M(t) = M(0) exp

(−t
τ

)
(3.4)

τ =
1

C
exp

(
−Kv
kT

)(
1− H

Hc

)2

(3.5)

C is a lattice vibrational frequency factor [≈ 108 − 1010s−1], K is the anisotropy para-

meter [Jm−3], v is the grain volume [m3], k is the Boltzmann constant [JK−1], T is the

temperature [K], H is the local magnetic field [T ] and Hc is the grain coercivity [T ].

The relaxation time is essentially defined by the relation between the anisotropic energy

(Kv) and the thermal energy (kT ), its behavior is demonstrated in the Néel Diagram (Fi-

gure 3.3). In ferromagnetic materials there is a specific temperature in which the mineral

change its behavior, this temperature is known as Curie Temperature (TC), while in anti-

ferromagnetic materials it’s known as Néel Temperature (TN). When the material has a

temperature T > TC , the thermal energy dominates and the grain acquire a paramagnetic

behavior, therefore it won’t be able to preserve the magnetic information. The material

will only be capable to preserve the remanent magnetization when T < TC thus presenting

a ferromagnetic behavior, but there is a temperature gap (TB < T < TC) in which the

grain still doesn’t preserve the magnetization information because it has a superparamag-

netic behavior (τ < 100s). The temperature where the anisotropic energy overcomes the

thermal energy is known as Blocking Temperature (TB), only for T < TB the material will

be able to preserve remanent magnetization.

3.2.2 Chemical Remanent Magnetization

The formation of new magnetic minerals or the alteration of pre-existing minerals can

occur in a rock that passes through chemical alteration processes. Those altered/created

minerals, when grow in volume in the presence of an external magnetic field, if achive

a minimum volume, will acquire a Chemical Remanent Magnetization (CRM) (Butler,

1992).

In subaerial lava flows, the high-temperature oxyexsolution of titanomagnetites produ-

ces an intergrowth of magnetite with ilmenite, if the oxidation continues it will become a
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Figure 3.3: Néel Diagram - the continuous lines indicate grains whose combinations of volume and

coercivity values produce the same unblocking temperatures (after Dunlop and Özdemir, 2015).

mixture of hematite, pseudobrookite and rutile. This type of process is known as Ther-

mochemical Remanent Magnetization (TCRM) in which occur simultaneously the slow

cooling and the volume growth of the magnetic grain. Usually, reheating processes on

this type of samples produce a TB higher than ordinary (Buddington and Lindsley, 1964;

Dunlop and Özdemir, 1997).

3.2.3 Viscous Remanent Magnetization

The Earth surface rocks are always subject to Earth’s geomagnetic field, whose charac-

teristics vary over time (e.g. geomagnetic pole position drift, reversal of polarity). The long

lasting exposure to a weak magnetic field induces a secondary magnetization in the rocks

known as Viscous Remanent Magnetization (VRM). The VRM obey the Equation 3.5, but

its behavior over time exhibit a logarithmic pattern due to the variety of grain sizes and

shapes in the material (Butler, 1992; Dunlop and Özdemir, 1997).

Another type of VRM is the Thermoviscous Remanent Magnetization (TVRM) which

is a viscous magnetization more effective due to higher temperatures, causing the rock

to lose part of its primary magnetization (Figure 3.4). The key factors that determine if

the rock has lost all of its magnetic information are the temperature which the rock was

subjected and for how long it was exposed (Pullaiah et al., 1975).
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Figure 3.4: Pullaiah diagrams - the continuous lines indicate how blocking temperatures vary with different

relaxation times for the same grains (adapted from Butler, 1992 apud Pullaiah et al., 1975).

Paleomagnetic studies on Archean rocks often shown that part of the rock magnetiza-

tion was acquired due to TVRM processes, making the magnetization intensity be lower

then expected. In order to fully understand the magnetization in such ancient rocks, one

must fully comprehend how the TVRM was generated and how it influences in the rock

magnetization (Herrero-Bervera et al., 2016; Smirnov and Tarduno, 2005).

3.2.4 Isothermal Remanent Magnetization

A rock briefly subjected to a strong magnetic field at constant temperature will obtain

a secondary magnetization called Isothermal Remanent Magnetization (IRM) (Lowrie and

Fichtner, 2007). In nature, this type of magnetization process happens when a rock is

exposed to a magnetic field created by a lightning strike (Butler, 1992).

A rock that was hit by a lighting strike has its magnetic properties modified. It will

present a increase in its magnetization intensity, susceptibility values and in the Koe-

nigsberger’s Q values (ratio of remanent over induced magnetization), will also have its

magnetic mineralogy alterated by oxidation of magnetite to maghemite (Salminen et al.,

2013).
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3.3 Statistics in Paleomagnetism

In order to understand the magnetic information in rocks samples, it is necessary to

perform some laboratory analysis (Section 3.5.1) to extract the magnetic directional infor-

mation. To do so, the sample magnetic declination and inclination information vectors are

decomposed in small portions and the statistical analysis of this decomposition provides

some knowledge of the ancient geomagnetic field.

Fisher (1953) developed the statistics of directional data on a sphere which is used to

analyze paleomagnetic directions. Equation 3.6 gives the probability of finding a direction

in a band of width dθ between θ and θ + dθ:

Pdθ(θ) =
κ

2sinh(κ)
exp[κcos(θ)]sin(θ)dθ (3.6)

where θ is the angle from the true mean direction and κ is the precision parameter.

The precision parameter determines how scattered the data are on the sphere. Low

values of κ indicates that the data is widely scattered while higher values of κ indicates

that the data is well grouped. From a finite sample set of directions κ can be estimated

by Equation 3.7:

κ ≈ k =
N − 1

N −R (3.7)

where N is the number of unit vectors that represent from each sample directional data

and R is the resultant vector (McFadden, 1980; Tauxe et al., 2018).

The confidence limit is another important parameter, it determinate an angular radius

from the calculated mean direction which indicates the probability of the true mean direc-

tion to fall inside such circle. Equation 3.8 provides de confidence limit for a known data

set:

cosα(1−p) = 1− N −R
R

[(
1

p

) 1
N−1

− 1

]
(3.8)

(1 − p) represent the probability level, in other words, how accurate the data is regarded

to the calculated mean, usually (1 − p) = 0.95. A reasonable approximation for κ ≥ 10

and N ≥ 10 is given by Equation 3.9 (Butler, 1992):

α95 ≈
140◦
√
kN

(3.9)

The Fisher Distribution Function is the most used analytical tool in determining mean

paleomagnetic directions. Nevertheless, it is important to say the there are others statis-

tical approaches that can be used to analyze vector data. Kent Distribution (Kent, 1982)



34 Chapter 3. Methods

considers that the probability parameter has elliptic distribution instead of a circular one.

Bingham Distribution (Bingham, 1974) takes one step further. It considers that the dis-

tribuiton has elliptical behavior and is antipodally symmetric, in others words, it treats

bi-modal data. However, each method has its owns advantages and disadvantagesand an

analysis is needed to determine which of the approaches is best suited for the desired

analysis.

In order to ensure the data quality in paleomagnetic studies, (Van der Voo, 1990)

established seven reliability criteria, among which the criteria regarding age reliability (I,

IV), structural control (V) and laboratory demagnetization analysis (II, III) are the most

important. Meert et al. (2020) reviewed the original work of Van der Voo (1990) and

updated the seven reliability criteria under the light of the new development that occurred

in the paleomagnetic science in the past 30 years. The seven criteria from the original

work are listed in Table 3.2 below:

Table 3.2 - Van der Voo (1990) seven quality criteria.

I. Well-determined rock age and a presumption that magnetization is the same age;

II. Sufficient numbers of samples (N ≥ 24), κ (or K) ≥ 10 and α95 (A95) ≤ 16.0;

III. Adequate demagnetization that demonstrably includes vector subtraction;

IV. Fields tests that constrain the age of magnetization;

V. Structural control and tectonic coherence with craton or block involved;

VI. The presence of reversals;

VII. No resemblance to paleopoles of younger age (by more than a period).

3.4 Sample Collection and Preparation

Samples at each sampling site were collected using a gasoline powered drill as shown

in Figure 3.5. Each site provided 7-11 oriented cores with approximately 5-8 cm long

and 2.5cm in diameter, the location of all sites are presented in Figure 2.1. The samples

were oriented by a Pomeroy Orienting Fixture (ASC ScientificTM) coupled with a Brunton

Compass.

The core samples were cut in small cylinders (specimens) with ≈2.2cm length in the

laboratory of the Institute of Astronomy, Geophysics and Atmospheric Sciences of the

University of São Paulo (IAG-USP) Figure 3.6. All core samples provided 191 specimens

for the mafic dykes and 64 specimens for the rhyolite.
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(a) Rhyolite (b) Mafic dyke

Figure 3.5: Sampling

Figure 3.6: Laboratory samples

3.5 Laboratory Analysis

All the analysis were performed at the Paleomagnetism and Rock Magnetism Labora-

tory at IAG-USP (USPMag). The demagnetization procedures were performed inside a

shielded room with ambient magnetic field < 500 nT .

3.5.1 Reconstructing a Long Forgotten Directional Vector

The magnetization directional data in unaltered igneous rocks can be recovered using

demagnetization techniques (Collinson, 1983). Those techniques seeks to retrieve the ge-

omagnetic field characteristics (declination, inclination, intensity) of the rock formation

times. In order to do so, it is performed a step-wise demagnetization protocol applying

alternating magnetic field or thermal procedures. Both methods obey Equation 3.5, but
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use different approaches (Parry, 2013). Figure 3.7 exemplifies a response to be obtained

from a demagnetization process applied to a sample with two well-separated magnetization

components.
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Figure 3.7: Representative demagnetization vector diagrams; A - Perspective view; B - Projection onto

the horizontal plane; C - Projection onto the vertical plane; D - Projection of the two orthogonal planes

in only one diagram; E - Demagnetization interval for each component (modified from Butler, 1992).

Precambrian rocks usually have more than one overlapping magnetization component,

making it more difficult to interpret the data (Dunlop, 1979). Halls (1976, 1978) and

Hoffman and Day (1978) developed a technique to analyze multi-component magnetization

data (i.e. remagnetization circles), however the method didn’t allowed to make a jointed

analysis with direct observations obtained by Zijderveld diagram interpretation (Zijderveld,

2013). It was only with Kirschvink (1980) and McFadden and McElhinny (1988) that this

problem was solved.

3.5.1.1 Thermal Demagnetization

A rock sample is formed by an assemblage of magnetic grains, each with its own TB.

In a null magnetic field room, when the sample is heated to a temperature T<TC , all the

grains with TB<T will have their magnetic moment randomly oriented. Cooling the sample
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back to room temperature will make that this new random orientation is preserved. Repe-

ating this procedure slowly increasing the temperature T until T ≥ TC will make that all

magnetic moments become randomly oriented (Figure 3.8). Equation 3.5 exemplifies this

behavior, all the grains with TB<T<TC will present a very low relaxation time (superpa-

ramagnetic behavior) therefore the magnetic moment will lose its primary orientation and

will align with the local field when the sample is cooled. The new orientation is random

because the procedure is performed in a magnetically shielded room. Gradually increasing

the temperature will affect all magnetic minerals making that the sample magnetization

become approximately null (Creer, 2013; Parry, 2013; Dunlop and Özdemir, 2015; Turner

et al., 2015).

BA

Magnetic moment Randomly oriented grainOriginal oriented grain

C

Figure 3.8: Schematic representation of a sample response during an thermal demagnetization; A - Low

temperature step; B - Intermediate temperature step; C - High temperature step (adapted from Lowrie

and Fichtner, 2007).

3.5.1.2 Alternating Magnetic Field Demagnetization

The coercive force or coercivity (HC) is the magnetic field intensity required to realign

the magnetic moment of a mineral grain. A rock sample is formed by a assemblage of

grains, each with its own coercivity. In a null magnetic field environment, when subjecting

the sample to an alternating magnetic field (AF) that decay with time in all its directions,

the grains with coercivity lower than the intensity of the AF will have its magnetic moments

realigned accordingly to the applied field. Repeating this procedure slowly increasing the

AF intensity will make the sample magnetization become approximately null (Figure 3.9).

Equation 3.5 exemplifies this behavior which can be simplified to τ = C2

(
1− H

Hc

)2
, where

C2 = 1
C

exp
(
−Kv

kT

)
, all the grains with HC ≤ H will present a very low relaxation time
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therefore the magnetic moment will loose its primary orientation and will align with the

applied field. During a step, the magnetic moments of the sample will align upward when

the field reaches its maximum peak and downward when the field reaches its minimum

peak. The decay of the field over time causes only part of the moments to realign in a

same step. In the end, the magnetization will be approximately zero (As, 2013; Parry,

2013; Dunlop and Özdemir, 2015; Turner et al., 2015).

3.5.2 Hysteresis Loops

A hysteresis loop measures the sample magnetization response when subjected to an

inductive field. Figure 3.1b demonstrates the usual response of a ferromagnetic material

and displays the obtained parameters. The saturation magnetization (Ms) represents the

maximum value that the sample magnetization can achieve, the saturation remanent mag-

netization (Mrs) is the magnetization intensity that the sample preserves after reducing

the applied field from saturation values back to H = 0, the coercive force or coercivity

(Hc) is the applied field needed to make M = 0 and the remanent coercivity (Hcr) is the

value that makes the magnetization became null again when increasing the applied field

back to H = 0 from that starting point.

3.5.3 FORC Diagrams

The First-order Reversal Curve (FORC) diagram (Roberts et al., 2000) is a more recent

technique that is used to analyze hysteresis curves in order to characterize the magnetic

mineralogy. Basically consists in performing repeated partial hysteresis curves of a sample

in order to map all of the curve interior, then it is calculated a mixed second derivative

from the data points (Equation 3.10):

ρ(Br, B) = −1

2

∂2M(Br, B)

∂Br∂B
(3.10)

In order to better visualize the results, a change in the coordinate systems is performed

(Bc = (Br −B)/2 ; Bi = (Br +B)/2), where Bc is the sample coercivity and Bi indicates

the magnetic interaction of the minerals (Figure 3.10). The typical responses obtained

from FORC diagrams are displayed in Figure 3.11.
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Figure 3.9: Schematic representation of a sample response during an alternating magnetic field demagneti-

zation; A - Low intensity AF applied; B - Intermediate intensity AF applied; C - Low intensity AF applied;

A, B and C subplots demonstrate the effects of the AF in the minerals magnetic moments (adapted from

Butler, 1992; Lowrie and Fichtner, 2007).
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Figure 3.10: A - Definition of FORC measurements; B - Mapped hysteresis; C -

FORC data points; D - FORC diagram example (after Roberts et al., 2014).

Figure 3.11: Typical FORC results (Roberts, 2015).
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3.5.4 Isothermal Remanent Magnetization

Isothermal Remanent Magnetization (IRM) Curves are obtained by progressively sub-

jecting a rock sample to a magnetizing field, in one or more axes as shown in Figure 3.12

(Dunlop, 1972; Lowrie, 1990). Usually a sample is composed of an assemblage of mi-

neral grains with different coercivities, the interpretation of the curves are performed in

softwares that can analyze the sample coercivity spectrum , therefore it can separate and

characterize each component (Kruiver et al., 2001; Maxbauer et al., 2016).

Field

Magnetic moment
Grains with magnetic moment randomly oriented

Grains with magnetic moment oriented with field

M
a
g
n
e
ti
z
a
ti
o
n

A

B

C

Figure 3.12: Schematic IRM Curve representation. Red and blue lines exemplifies the behavior of a low

and high coercivity sample, respectively.

3.5.5 Thermomagnetic Curves

A thermomagnetic curve measures the sample magnetic susceptibility response when

subjected to a heating (−190 C◦ up to 700 C◦) and cooling (700 C◦ down to ambient

temperature) processes (Hrouda, 1994), making it possible to characterize the magnetic

mineralogy by estimation of the Curie temperature (Grommé et al., 1969; Tauxe, 2006)

and checking for the presence of the Vervey Transition for magnetite (−150 C◦) and the

Morin Transition for hematite (−15 C◦) (Dunlop and Özdemir, 1997).

There are several ways to estimate the TC of a sample (e.g. Grommé et al., 1969; Mos-

kowitz, 1981; Tauxe, 2006). The Grommé et al. (1969) method analyzes the intersection

of two tangents adjusted in the thermomagnetic curve around the TC , however Petrovskỳ
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and Kapička (2006) demonstrated that this method overestimates TC . The differential

method (Tauxe, 2006) estimates TC by determining the point of maximum curvature in

the thermomagnetic curve through analysis of the second derivative of the curve.

3.5.6 Anisotropy of Magnetic Susceptibility

The magnetization of a rock in the presence of a weak magnetic field is described by

Equation 3.11:

M1 = k11H1 + k12H2 + k13H3

M2 = k21H1 + k22H2 + k23H3

M3 = k31H1 + k32H2 + k33H3

(3.11)

where Mi (i = 1, 2, 3) are the magnetization components, Hj (j = 1, 2, 3) are the magnetic

field intensity components and kij are the susceptibility tensor. k11, k22, k33 are the princi-

pals susceptibilities (maximum (K1), intermediate (K2) and minimum (K3), respectively)

which represents the orthogonal axes of the susceptibility ellipsoid (K1 ≥ K2 ≥ K3) that

describes the anisotropic behavior of the rock (Hrouda, 1982; Rochette et al., 1992).

The magnetic fabric characterize the shape and orientation of the susceptibility ellipsoid

in low-field anisotropy, it is controlled by the assemblage of dia-, para- and ferromagnetic

minerals in the rock and is defined by the parameters listed in the Table 3.3 below (Hrouda,

1982; Borradaile, 1987; Rochette et al., 1992; Tarling and Hrouda, 1993). In order to

estimate the parameters and direction of the principal susceptibilities usually is used the

Jeĺınek statistics (Jeĺınek, 1977; Jeĺınek and Kropáček, 1978).

Table 3.3 - Main AMS ellipsoid parameters.

Mean Susceptibility (Km) (K1 +K2 +K3)/3

Magnetic Lineation (L) K1/K2

Magnetic Foliation (F) K2/K3

Anisotropy Degree (P) K1/K3

Ellipsoid Shape (T) 2 ln(K2/K3)/ln(K1/K3)− 1

The ellipsoide shape defines if the fabric is neutral (T= 0), oblate

(0 < T ≤ 1) or prolate (0 > T ≥ 1).
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3.5.6.1 Anisotropy of Anhysteretic Remanent Magnetization

The Anisotropy of Anhysteretic Remanent Magnetization (AARM) is performed in

order to ensure that the sample AMS is carried mostly by ferromagnetic minerals. The

procedure consists in applying at predetermined positions a decreasing AF field while a

direct field (bias field) of small intensity is activated (Jackson, 1991; Agico Inc., 2017), then

the magnetization tensor is calculated using the Jeĺınek statistics (Jeĺınek, 1977; Jeĺınek

and Kropáček, 1978).
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Chapter 4

Results

The data analyses and plots were made using Anaconda Environment, PmagPy Soft-

ware Package, Remasoft and Anysoft (Chadima and Hrouda, 2006; Chadima and Jelinek,

2009; Anaconda Team, 2016; Tauxe et al., 2016).

4.1 Thermomagnetic Curves

All thermomagnetic curves were measured in a argon atmosphere using a Kappabridge

KLY4 coupled with a CS3 (high temperature) or CS-L (low temperature) apparatus (Agico

Inc.TM). The high temperature curves are depicted in Figure 4.1 and the low temperature

curves in Figure 4.2, it is possible to note that some rhyolite samples didn’t provided a

good outcome with noisy results given their relatively weak magnetic susceptibility. The

TC of the magnetic minerals were estimated by calculating the second derivative of high

temperature curves (Tauxe, 2006) and results are displayed in Table 4.1 and Table 4.2.

Individual samples results are presented in Appendix A.

Table 4.1 - TC of representative mafic dykes

samples.

Site ID Heating TC [◦C] Cooling TC [◦C]

SJ 577.5 576.1

SM01 587.6 588.4

SM02 590.9 591.4

SM03 579.0 582.3

SM04 583.8 591.3

SM05 582.5 581.2

SM06 609.2 579.2

SM07 579.0 581.0

SM08 581.5 582.8

Table 4.2 - TC of representative rhyolites sam-

ples.

Site ID Heating TC [◦C] Cooling TC [◦C]

CR01 594.5 596.3

CR02 595.9 595.7

CR03 597.9 595.9

CR04 388.2 637.6

CR05 460.8 600.3

CR06 590.9 644.0

CR07 530.5 700.5



46 Chapter 4. Results

0 100 200 300 400 500 600 700

Temperature (◦C)

0

5

10

15

20

M
a
g
n

et
ic

su
sc

ep
ti

b
il

it
y

(1
0
−

6
S

I)

(a) Rhyolites samples

0 100 200 300 400 500 600 700

Temperature (◦C)

0

250

500

750

1000

M
a
g
n

et
ic

su
sc

ep
ti

b
il

it
y

(1
0
−

6
S

I)

(b) Mafic dykes samples

Figure 4.1: High temperature thermomagnetic curves of representative samples from the studied sites

(heating curves in red and cooling curves in blue - dashed line indicates the TC of magnetite [580 ◦C]).
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Figure 4.2: Low temperature thermomagnetic curves of representative samples from the studied sites

(dashed line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).

The TC estimated values and the increase of magnetic susceptibility near −150◦C indi-

cates that the main magnetic carrier is magnetite. However, for some mafic dykes samples

the magnetic susceptibility doesn’t drop to 0 at the TC of pure magnetite. These samples

likely have a certain amount of hematite whose transition temperature is typically 680 ◦C.
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4.2 FORC Diagrams

FORC diagrams were measured in a Princeton Measurements Corporation Micromag

Vibrating Sample Magnetometer (VSM) at room temperature in a representative sample

of each rhyolite site and at the processing analyses it was employed a smoothing factor

of 20. All samples exhibit a characteristic behavior of a mixture paramagnetic + MD +

PSD grains (Figure 4.3), except CR04 and CR07 whose FORC were too noisy to allow any

readable map.
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Figure 4.3: FORC diagrams of representative rhyolite samples.

4.3 Hysteresis Loops

Hysteresis loops were measured in a Princeton Measurements Corporation Micromag

Vibrating Sample Magnetometer (VSM) at room temperature. Individual samples hystere-

sis loops are displayed in Appendix B. The sample collection hysteresis loops obtained are

displayed in Figure 4.4 below. According to Figure 8.11 of Tauxe et al. (2018), the rhyolite

samples presented a dominance of paramagnetic particles (except CR1G1 which presented

a ferromagnetic behavior) and all mafic dykes samples exhibited a ferromagnetic pattern,



48 Chapter 4. Results

SM02 and SM07 presented a pseudo-single domain behavior. CR04 and SM06 are mainly

composed of paramagnetic minerals. The hysteresis parameters estimated after applying

the dia/paramagnetic correction are displayed in Table 4.3 and the corresponding Day’s

diagram (Day et al., 1977) is shown in Figure 4.5. Figure 4.6 represents an alternative to

the Day’s diagram proposed by Tauxe et al. (2002). On both diagrams it is evident the

dominance of MD particles in the rhyolite samples.
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Figure 4.4: Hysteresis loops of representative site samples (a, b are the original hysteresis loops and c, d

represents the data after dia/paramagnetic correction).
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Table 4.3 - Hysteresis parameters of representative site samples

Sample
Ms Mrs Hc Hcr

Sample
Ms Mrs Hc Hcr

[mAm2/kg] [mAm2/kg] [mT ] [mT ] [mAm2/kg] [mAm2/kg] [mT ] [mT ]

CR1G1 529.93 10.07 3.61 36.14 SM1B 68.82 0.78 1.43 16.67

CR2B1 39.62 0.74 2.95 34.52 SM2D 1142.79 393.14 40.59 63.20

CR3A1 39.09 2.41 8.39 38.47 SM3D 1128.93 134.61 10.02 21.76

CR4C2 4.56 0.23 8.40 38.99 SM4A 1657.12 242.01 12.68 24.38

CR5C1 25.00 0.95 5.29 35.24 SM5F 1491.71 184.49 9.86 20.00

CR6H2 12.23 0.27 2.69 25.94 SM6D 8.01 0.38 5.32 28.88

CR7B1 10.23 0.39 6.17 34.96 SM7F 759.69 300.47 45.61 71.66

SJC 2230.10 315.07 10.77 19.73 SM8I 1443.66 158.76 8.84 18.83

(Ms = Saturation Magnetization; Mrs = Saturation Remanent Magnetization; Hc = Coercivity; Hcr =

Remanent Coercivity).
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Figure 4.5: Day’s diagram (Day et al., 1977) of the studied samples

(particles limits and mixing curves after Dunlop (2002a,b)).
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Figure 4.6: Tauxe et al. (2002) alternative Mrs/Ms × Hc diagram

(CSD = cubic single domian; USD = uniaxial single domain).

4.4 Isothermal Remanent Magnetization Curves

IRM curves were measured in a Princeton Measurements Corporation Micromag Vi-

brating Sample Magnetometer (VSM) at room temperature. Most rhyolite samples results

were of poor quality due to the low remanence of the samples achieving saturation vary

rapidly around 200 mT, except CR2B1 and CR3A1 indicating the presence of a high co-

ercivity mineral (Figure 4.7a). The mafic dykes provided some better quality results and

saturate in even lower field intensity then the rhyolite samples (Figure 4.7b). In order to

characterize the samples mineralogy, it was performed a decomposition of the IRM cur-

ves using the MAXUnMix Software (Maxbauer et al., 2016). The parameters obtained are

shown in Table 4.5 and Table 4.4 (individual samples results are displayed in Appendix C).
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Figure 4.7: IRM curves of representative site samples.

Table 4.4 - IRM unmixing parameters of mafic dyke samples

SJC SM1B SM2D

Comp 1 Comp 1 Comp 2 Comp 3 Comp 1 Comp 2 Comp 3

Bh 25.86 (±1.50) 32.4 (±1.07) 245.54 (±1.08) 688.19 (±1.13) 74.66 (±1.04) 168.41 (±1.05) 46.09 (±1.22)

DP 2.00 (±1.35) 2.28 (±1.05) 1.42 (±1.09) 1.9 (±1.15) 1.44 (±1.03) 1.33 (±1.03) 2.48 (±1.15)

P 0.98 (±0.02) 1.01 (±0.01) 0.16 (±0.03) 0.11 (±0.01) 0.84 (±0.05) 0.43 (±0.07) 0.18 (±0.04)

S 0.90 (±0.07) 0.92 (±0.06) 1.06 (±0.13) 1.16 (±0.13) 0.82 (±0.09) 2.00 (±0.22) 1.11 (±0.16)

OC 1 0.85 (±0.01) 0.08 (±0.08) 0.07 (±0.05) 0.52 (±0.16) 0.20 (±0.10) 0.28 (±0.20)

EC 1 0.87 (±0.01) 0.06 (±0.05) 0.07 (±0.05) 0.55 (±0.14) 0.17 (±0.08) 0.29 (±0.21)

SM3D SM4A SM5F SM7F SM8I

Comp 1 Comp 1 Comp 1 Comp 1 Comp 2 Comp 3 Comp 1

Bh 27.93 (±1.19) 33.16 (±1.07) 26.47 (±1.87) 103.60 (±1.04) 140.11 (±1.09) 63.59 (±1.08) 23.28 (±2.55)

DP 1.99 (±1.14) 1.87 (±1.05) 2.06 (±1.60) 1.66 (±1.02) 1.17 (±1.10) 2.34 (±1.05) 2.12 (±2.02)

P 0.99 (±0.01) 1.00 (±0.01) 0.98 (±0.02) 0.68 (±0.05) 0.13 (±0.04) 0.34 (±0.04) 0.98 (±0.02)

S 0.79 (±0.05) 0.89 (±0.03) 0.90 (±0.07) 1.12 (±0.09) 1.67 (±0.18) 1.20 (±0.08) 0.83 (±0.07)

OC 1 1 1 0.53 (±0.17) 0.03 (±0.05) 0.44 (±0.16) 1

EC 1 1 1 0.53 (±0.18) 0.01 (±0.04) 0.45 (±0.17) 1

(Bh = Mean coercivity; DP = Dispersion parameter; P = Component proportion; S = Skewness; OC = Observed contribution

to the total magnetization; EC = Extrapolated contribution to the total magnetization).



52 Chapter 4. Results

Table 4.5 - IRM unmixing parameters of rhyolite samples

CR1G1 CR2B1 CR3A1 CR5C1

Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2 Comp 1 Comp 2

Bh 41.13 (±1.10) 184.55 (±1.08) 42.74 (±1.14) 453.87 (±1.15) 44.81 (±1.08) 558.12 (±1.23) 36.09 (±1.11) 194.69 (±1.12)

DP 2.19 (±1.08) 1.44 (±1.05) 2.46 (±1.09) 1.89 (±1.21) 2.49 (±1.04) 1.86 (±1.34) 2.43 (±1.06) 1.45 (±1.14)

P 0.96 (±0.02) 0.26 (±0.06) 0.94 (±0.02) 0.25 (±0.01) 0.93 (±0.02) 0.24 (±0.02) 0.92 (±0.05) 0.32 (±0.05)

S 0.61 (±0.04) 1.91 (±0.26) 0.85 (±0.05) 0.85 (±0.15) 0.89 (±0.07) 1.15 (±0.28) 0.62 (±0.04) 1.13 (±0.15)

OC 0.89 (±0.04) 0.11 (±0.06) 0.86(±0.04) 0.14 (±0.09) 0.88 (±0.08) 0.12 (±0.10) 0.89 (±0.13) 0.11 (±0.10)

EC 0.90 (±0.05) 0.10 (±0.06) 0.84 (±0.04) 0.16 (±0.11) 0.85 (±0.07) 0.15 (±0.16) 0.86 (±0.10) 0.14 (±0.11)

(Bh = Mean coercivity; DP = Dispersion parameter; P = Component proportion; S = Skewness; OC = Observed contribution to the total magnetization; EC

= Extrapolated contribution to the total magnetization).

4.5 Anisotropy of Magnetic Susceptibility

The AMS data of individual samples were acquired in a Kappabridge MFK1-A (AgicoTM)

and the AARM data were acquired using a LDA-3 AF Demagnetizer coupled with a AMU-1

Anhysteretic Magnetizer and a JR-6 Magnetometer (AgicoTM).

The results obtained from the AMS characterization of each studied site are displayed

in Figure 4.8 and Table 4.6 below. An AARM study on two samples of each rhyolite site

was also performed. Only SM01 and SM06 sites provided coherent AMS results from the

mafic dykes samples and all CR sites clustered in common direction, except CR04 site

which yielded a different direction. The AARM analyses of the sites CR01, CR02, CR05

and CR07 provided similar direction to that of AMS.

The T-P diagram of the mafic dykes (Figure 4.11) determined that only SM01 site

exhibit higher values of anisotropy degree (P) and that the anisotropy ellipsoids do not

have a preferred shape. The K-P diagram of the mafic dykes (Figure 4.12) show that the

samples had a low value of mean susceptibility (< 0.07 SI) clustering around 0.05 SI and

that most sites have its anisotropy characterized by ferromagnetic particles.

The rhyolite analysis provided three important characteristics. The magnetic grains

have preferred oblate shape, presented a very low value of mean susceptibility, around

0.0001 < Km < 0.0004 SI, (Figure 4.10) and that the samples had 0.01 - 0.001 %

of magnetite in its composition (Figure 4.9), agreeing with Zincone et al. (2016) which

performed a whole-rock geochemistry providing a percentage of ferromagnesian elements

Fe2O3 +MgO +MnO + TiO2 < 4.4 wt.%.
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Figure 4.9: L-F diagram of the rhyolite samples. From right
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increase in the magnetite percentage (after Borradaile, 1987).
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Cañón-Tapia (2004)).
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4.6 Paleomagnetism

In order to obtain the paleomagnetic information, the samples were subjected to alter-

nating magnetic field and thermal demagnetization procedures.

The AF demagnetization of sites SJ, SM02, SM03, SM04, SM05, SM07 and SM08

were performed in a LDA-5 AF Demagnetizer (AgicoTM) and the directional data were

acquired in a JR-6 Magnetometer (AgicoTM). The AF demagnetization and the directional

data acquisition of sites SM01, SM06 and CR were performed in a cryogenic SQUID

magnetometer coupled with a AF coil (2G-EnterprisesTM). Each site had its own AF

protocol as demonstrated in Table 4.7.

Table 4.7 - AF protocol of each site.

SM01 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45,

50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 [mT]

SM02, SM03,

SM04, SM05, SM08

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 17, 20, 25, 30, 35,

40, 50, 60, 70, 80, 90, 100 [mT]

SM06, SM07 2, 3, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60, 65, 70, 75, 80, 85, 90, 95, 100 [mT]

SJ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45,

50, 55, 60, 65, 70, 80, 90, 100 [mT]

CR 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45,

50 ,55 , 60, 65, 70 ,75, 80, 85, 90, 95, 100 [mT]

The samples provided two sets of directional data. One was obtained in the initial AF

steps and another obtained in the final AF steps. Individual specimens results are shown

in Figure 4.13, demonstrating the type of demagnetization characteristics found in the

samples.

The thermal demagnetization treatment was performed according to the following pro-

cedures. Prior to the heating process, the samples were subjected to a Low Temperature

Demagnetization (LTD) associated with a low intensity AF demagnetization (2, 4, 6, 8

and 10 mT steps) performed in a LDA-5 AF Demagnetizer (AgicoTM), in order to remove

the multi-domain component of the magnetization information (Merrill, 1970; Borradaile,

1994). This procedure will be referred here as pre-thermal treatment.
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Figure 4.13: Individual samples AF demagnetization characteristics (colored dots represents the steps

used to estimate a component direction [blue for great circles analysis and red for PCA, black and white

dots represents the steps not used to estimate any component direction and pink dots the calculated mean

direction]. Similar [dark and light] colors represents the same component).
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All directional data were acquired in a cryogenic SQUID magnetometer (2G-EnterprisesTM)

and the heating procedure was performed in a TD-48SC Thermal Demagnetizer (ASC

ScientificTM). The heating steps were 50, 100, 150, 200, 250, 300, 320, 340, 360, 380, 400,

420, 440, 460, 480, 500, 520, 540, 560, 580, 560, 600, 620, 640, 660 and 680 ◦C. Only

sites SM01 and SM06 of mafic dyke samples were utilized in the thermal demagnetiza-

tion because it were the only ones that provided reliable results in the previous analyses.

Individual specimens results are shown in Figure 4.14, demonstrating the type of demag-

netization characteristics found in each sample (the decrease of magnetization intensity

values in the LTD steps by almost half NRM implies that the samples have a significant

amount of MD particles).

0 100 200 300 400 500 600 700 °C

M/Mmax

Mmax = 1.51 A/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CR1C2

N

Down
Up

0 100 200 300 400 500 600 700 °C

M/Mmax

Mmax = 5.59 A/m

N

E

S

W

Up

E

Down

W

Horizontal
Vertical

Unit=1.07  A/m

SM01H1

N

N

Down
Up

N

E

S

W

Up

E

Down

W

Horizontal
Vertical

Unit = 0.246 A/m

0 100 200 300 400 500 600 °C

M/Mmax

Mmax = 5.51e-03 A/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SM06B2 N

E

S

W

Up

E

Down

W

Horizontal
Vertical

Unit = 924.e-06 A/m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Down
Up

Figure 4.14: Individual samples thermal demagnetization characteristics (blue dots represents the steps

used to estimate a component direction with great circles analysis, black and white dots represents the

steps not used to estimate any component direction and pink dots the calculated mean direction. Similar

(dark and light) colors represents the same component).

The mafic dykes samples did not provide coherent results at site level. Therefore to
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calculate the sites mean directions, only rhyolite samples were taken in consideration. It

is important to point out that to calculate the sites mean directions, only the reliable spe-

cimens demagnetization steps were taken in consideration (both pre-thermal and heating

treatment). Both vectorial and great circle analyses were applied for all sites, and results

were then combined using the method of McFadden and McElhinny (1988). In great cir-

cle analyses the range of AF and temperature steps were wide enough to incorporate low

and high coercivities/unblocking temperatures. The vectors considered in the site means

comprise only the high coercivity and high unblocking temperatures. The final results are

shown in Figure 4.15 and the samples mean direction obtained are displayed in Appen-

dix D. Mean directions obtained from each site are also displayed Figure 4.15 (CR Means)

and Table 4.8 alongside with VGP location.

Table 4.8 - Thermal + AF demagnetization directional data

Site mean direction VGPs

Site Long (◦W) Lat (◦S) n/N Dec (◦) Inc (◦) α95 (◦) K Plong (◦E) Plat (◦N) dp dm

CR01 40.90600 13.66968 11/15 36.10 11.80 15.80 9.00 22.70 49.14 8.16 16.05

CR02 40.90644 13.66975 6/10 29.40 6.90 14.30 25.00 20.76 56.17 7.23 14.38

CR03 40.90591 13.66989 8/8 64.10 -5.10 13.40 19.00 45.29 25.76 6.74 13.44

CR04 40.90515 13.66791 8/14 61.50 -23.30 12.20 23.00 55.36 30.20 6.91 12.99

CR05 40.90546 13.66500 5/5 33.80 -26.40 31.60 8.00 53.71 57.20 18.55 34.24

CR06 40.90493 13.66594 5/10 32.60 39.70 26.20 11.00 0.90 41.72 18.88 31.45

CR07 40.90416 13.66591 5/9 24.40 25.90 16.30 29.00 1.58 53.53 9.51 17.61

Mean 40.90544 13.66773 40.52 4.32 22.67 8.04 30.68 46.82 11.38 22.72

(Lat = Latitude; Long = Longitude; n/N = Number of samples used to calculated the mean direction/Number of samples

analyzed; Dec = Declination; Inc = Inclination; α95 = Radius of the 95% confidence cone; K = Precision parameter; VGP =

Virtual Geomagnetic Pole; Plong = Paleolongitude; Plat = Paleolatitude; dp = semi-axis parallel to the latitude; dm = semi-axis

parallel to the longitude).
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Figure 4.15: Sites mean directions acquired from both thermal and AF demagnetization procedures. CR

Means represents the mean directions obtained from each site.
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Chapter 5

Discussion

5.1 Magnetic mineralogy

Magnetite is the main magnetic carrier of the rhyolite samples, characterized through

thermomagnetic curves and obtained coercivity values by IRM analyses (Figure 4.1a, 4.2a,

4.7a and Table 4.2, 4.5). The uncorrected hysteresis loops behavior, low values of Km

and noisy data quality in the FORC diagrams evidenced a large amount of paramagnetic

particles in the samples (Figure 4.4a, 4.7a, 4.10, 4.3). Despite this scarcity of ferromagnetic

particles, the FORC diagrams associated with the corrected hysteresis loops behavior and

parameters analysis also indicates the presence of multi-domain particles (Figure 4.3, 4.4c,

4.5, 4.6).

Most mafic dykes thermomagnetic curves presented reversible behavior with a well pro-

nounced Vervey transition and a “tail”feature at high temperatures (Dunlop and Özdemir,

1997), suggesting that the main magnetic carrier is magnetite, but some high Tc mineral is

also present in a few samples, most likely been hematite (Figure 4.1b, 4.2b and Table 4.1).

The coercivity values obtained in the IRM analyses confirms the presence of both minerals

(Figure 4.7a and Table 4.4). Hysteresis loops exhibits a dominantly superparamagnetic

pattern in most of the samples (Figure 4.4d), however the hysteresis parameters analysis

demonstrated that the mafic dykes do not have a preferred behavior, it is composed of a

mixture of SP + SD + PSD + MD particles (Figure 4.5, 4.6).

5.2 Magnetic fabric

The AMS directional data (Figure 4.8) obtained from the mafic dykes was of poor qua-

lity, only SM01 and SM06 provided reliable results (associated error ≤ 15◦). However it is
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also possible to noticed some preferred NE-SE lineation direction for the sites SM02, SM03

and SM05 (SM08 exhibit a NW lineation trend). The observed trends are in agreement

with those reported for the dyke swarms in the São Francisco Craton (Girardi et al., 2017),

which exhibit a NW or NE preferred trend.

All rhyolite sites provided similar results both in anisotropy and susceptibility para-

meters with an Eastward high inclination lineation dipping pattern, except CR04 which

provided a NE sub-horizontal pattern, most likely because its location near the border of

the outcrop region (Figure 5.1). The low values of mean magnetic susceptibility and P

parameter associated with a preferred oblate ellipsoid shape is an usual feature in silicic

flows (Haag et al., 2020, and references there in).
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Figure 5.1: Map showing the AMS results for each site from the rhyolite.
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The similarity in the AMS results indicates that the body presented a coherent lava

flow direction during its formation. This is the first time that an AMS characterization is

performed in a Precambrian magmatic body of that portion of the São Francisco Craton.

It suggests that others magmatic bodies of the region with similar age could present the

same feature and new AMS studies should be carried out.

5.3 Paleomagnetic direction

Rhyolite samples were subjected to detailed demagnetization procedures. Despite the

effort, the rock samples only provided a secondary magnetization direction (Dm = 40.52◦,

Im = 4.32◦, α95 = 22.67◦, K = 8.04). In the next sections will be discussed a selected

group of paleomagnetic poles available in the literature.

The mafic dykes didn’t provide any paleomagnetic direction in both thermal and AF

demagnetization procedures. Therefore, from this point forward, only the rhyolite results

will be discussed. These rocks provided a coherent magnetic component for the rhyolite

sites (Table 4.8). No field test was possible in these rhyolites due to the poor outcropping

conditions. Therefore, the interpretation of the significance of this characteristic direction

is difficult. The fact that the characteristic component obtained from vector analyses

and great circles is very different form the present-day field or the dipolar field for the

site locations, and is also different from expected Cretaceous components (Ernesto, 2006),

suggest this component represents an old record of the geomagnetic field. The position of

the corresponding pole in relation to other results obtained for the same region provide

some hints on their significance. The mean direction obtained in the rhyolites is similar

to the finds of D’Agrella-Filho et al. (2011) in the study of a collection of samples from

the Jequié Block when considering the antipodal direction (Dm = 212.6◦; Im = 4.1◦; α95

= 9.9◦; k = 38.2). Evans et al. (2016), Salminen et al. (2016) and D’Agrella-Filho et al.

(2020) also reported secondary S/SW component with low inclinations, the first two relate

it with the Brasiliano orogeny (late Neoproterozoic).

5.4 São Francisco Craton paleomagnetic poles

There are very few well constrained Precambrian paleomagnetic poles for the São Fran-

cisco Craton in the literature (D’Agrella-Filho and Pacca, 1998; D’Agrella-Filho et al.,
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1990, 2004, 2011, 2020; Evans et al., 2016; Salminen et al., 2016, 2019; Trindade et al.,

2004). By comparing the VGP obtained from the rhyolite samples (Table 5.1) and the

Apparent Polar Wander Path (APWP) generated by those selected Precambrian CSF pa-

leomagnetic poles (Figure 5.2), it is possible to estimate the age of the remagnetization

process that the rhyolites were subjected.

Table 5.1 - Selected paleomagnetic poles from São Francisco Craton

Rock unit Code
Age

B/N
Plat Plon A95

K Q(7) Ref.
(Ma) (◦N) (◦E) (◦)

Uauá Ua 2623.8 ± 7.0 25/89 25.2 330.5 7.4 16.4 5 Salminen et al. (2019)

Jequié Charnockites JQ 2035 ± 4 12/100 -0.5 342.1 9.6 21.6 4 D’Agrella-Filho et al. (2011)

Pará de Minas* PM 1798 ± 4 10/36 39.8 16.8 17.0 9.0 4 D’Agrella-Filho et al. (2020)

Curaça Cu 1506.7 ± 6.9 7/51 10.1 9.6 15.8 15.6 5 Salminen et al. (2016)

Bahia costal dykes* Bcd 923.2± 2.6 46/267 7.3 106.4 6.2 12.5 6 Evans et al. (2016)

Jequié other Comps* JoC ——– — 55.7 32.9 9.0 46.3 — D’Agrella-Filho et al. (2011)

Rhyolites Ry ——– 7/48 46.82 30.68 — — 3 This work

(B/N = Number of sites/Number of samples; Plat = Paleolatitude; Plon = Paleolongitude; Q(7) = Van der Voo (1990) seven

quality criteria; * indicates that the antipole has been taken into consideration)

The Uauá basic dyke swarm was early analyzed by D’Agrella-Filho and Pacca (1998).

At that time, the authors classified the calculated magnetization direction as secondary

mostly due to the lack of any field tests. More recently, Salminen et al. (2019) revisited

the region and performed a new paleomagnetic study in which the authors were able to

perform a positive baked contact test, ensuring the primary nature of the magnetization.

Therefore, the Uauá pole is the oldest Precambrian paleomagnetic pole of the São Francisco

Craton, with both geochronological and paleomagnetic information well established.

The Jequié Charnockites represents high grade metamorphic rocks of the eastern border

of the block (D’Agrella-Filho et al., 2011). The authors were able to characterized two

magnetization components in the studied samples. One corresponding to the JQ pole

and another (JoC) that was only present in the samples retrieved from the inner areas of

the Jequié Block and the Salvador-Itabuna-Curaça Belt. This second direction yielded a

paleomagnetic pole located at 55.7◦S, 212.9◦E (A95=9.0◦; K=46.3), which is very similar to

the Rhyolite VGP (Table 4.8). No interpretation was provided regarding JoC, the authors

were only able to relate it with the formation of the Salvador-Itabuna-Curaça Belt because

of its magnetic fabric, structural features and sampling location.

The Pará de Minas is the most recent pole (among the selected ones) published in the

literature (D’Agrella-Filho et al., 2020). It essentially consists of diabase to gabbro mafic
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dykes located at the southernmost part of the SFC at Minas Gerais state. One of the

most important features of the work is the new insights regarding the reconstruction of

the supercontinent Columbia (Meert and Santosh, 2017, and references there in), in which

the authors suggests a new paleogeographic connection between the São Francisco/Congo,

Rio de la Plata, North China and India Cratons.

The Curaça pole represents the inner sector of the SFC at the Chapada Diaman-

tina and also provides a different approach for the paleogeographic reconstruction of the

Nuna/Columbia supercontinent at 1.5 Ga (Salminen et al., 2016). The key aspect of the

proposal is the relation between SW Congo and S-SE Baltica in two possible configuration,

one with SF/C close to Baltica and another with a gap between them.

Ua
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Bcd
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90°

270°
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Figure 5.2: Selected SFC paleomagnetic poles in present day map coordinates (SFC highlighted in gray;

Poles codes in agreement with Table 5.1; The size of the pole marker represents the A95 value and the

shaded area inside the Q7 value; Dashed line assists the identification of the age relations of each pole,

does not represent the apparent polar wander path of the SFC).

The paleomagnetic information regarding the Ilhéus, Itaju do Colônia and Olivença

mafic dykes that outcrops in the Bahia beach coast has been intensively studied over the

past decades (D’Agrella-Filho et al., 1990, 2004; Evans et al., 2016). The most recent work

by Evans et al. (2016) review all of the paleomagnetic data available for the region, adds

new data and constrains the geochronological information of the studied area. The authors

correlated the mafic dykes occurrence with a possible large igneous province proposed by
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Ernst and Buchan (1997) and demonstrated that there were several possible locations that

the SF/C Craton could be located at the period of the Rodinia supercontinent (Meert and

Torsvik, 2003; Evans, 2009).



Chapter 6

Conclusions

The main conclusions of this study is summarized below:

• Magnetite is the main magnetic carrier in both mafic dykes and rhyolite samples.

• The magnetic mineralogy characterization indicates that the samples are mainly

composed of a mixture PSD + MD grains, but also present a high amount of para-

magnetic particles.

• The mafic dykes didn’t provided satisfactory results in both magnetic fabric and

paleomagnetic direction characterization.

• The rhyolite magnetic fabric indicates low values of magnetic susceptibility and aniso-

tropy degree (P). It was possible to identify that the outcrop region posses a coherent

eastward sub-vertical lava flow direction.

• The paleomagnetic characterization of the rhyolites samples provided a magnetiza-

tion component (Dm = 40.52◦, Im = 4.32◦, α95 = 22.67◦, K = 8.04), yielding a VGP

at 46.82◦N, 30.68◦E (dp = 11.38, dm = 22.72), which is similar to other paleomagne-

tic poles obtained for the same region. Following previous interpretations for these

components, and given the lack of field tests for the rhyolites studied here, suggests

that this component is old, but secondary.
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Thermomagnetic Curves
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Figure A.1: High temperature thermomagnetic curve of representative sample from site CR01 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.2: Low temperature thermomagnetic curve of representative sample from site CR01 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.3: High temperature thermomagnetic curve of representative sample from site CR02 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.4: Low temperature thermomagnetic curve of representative sample from site CR02 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.5: High temperature thermomagnetic curve of representative sample from site CR03 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.6: Low temperature thermomagnetic curve of representative sample from site CR03 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.7: High temperature thermomagnetic curve of representative sample from site CR04 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.8: Low temperature thermomagnetic curve of representative sample from site CR04 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.9: High temperature thermomagnetic curve of representative sample from site CR05 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.10: Low temperature thermomagnetic curve of representative sample from site CR05 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.11: High temperature thermomagnetic curve of representative sample from site CR06 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.12: Low temperature thermomagnetic curve of representative sample from site CR06 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.13: High temperature thermomagnetic curve of representative sample from site CR07 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.14: Low temperature thermomagnetic curve of representative sample from site CR07 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.15: High temperature thermomagnetic curve of representative sample from site SM01 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.16: Low temperature thermomagnetic curve of representative sample from site SM01 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.17: High temperature thermomagnetic curve of representative sample from site SM02 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.18: Low temperature thermomagnetic curve of representative sample from site SM02 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.19: High temperature thermomagnetic curve of representative sample from site SM03 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.20: Low temperature thermomagnetic curve of representative sample from site SM03 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.21: High temperature thermomagnetic curve of representative sample from site SM04 (dashed

line indicates the TC of magnetite [580 ◦C]).

−200 −150 −100 −50 0

Temperature (◦C)

400

600

800

M
a
g
n

et
ic

su
sc

ep
ti

b
il

it
y

(1
0
−

6
S

I)

Figure A.22: Low temperature thermomagnetic curve of representative sample from site SM04 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.23: High temperature thermomagnetic curve of representative sample from site SM05 (dashed

line indicates the TC of magnetite [580 ◦C]).

−200 −150 −100 −50 0

Temperature (◦C)

400

600

800

M
a
g
n

et
ic

su
sc

ep
ti

b
il

it
y

(1
0
−

6
S

I)

Figure A.24: Low temperature thermomagnetic curve of representative sample from site SM05 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).



Appendix A. Thermomagnetic Curves 99

0 100 200 300 400 500 600 700

Temperature (◦C)

10

20

30

40

M
ag

n
et

ic
su

sc
ep

ti
b

il
it

y
(1

0
−

6
S

I) Smoothed cooling curve

Smoothed heating curve

Heating (Tc = 609.2 ◦C)

Cooling (Tc = 579.2 ◦C)

Figure A.25: High temperature thermomagnetic curve of representative sample from site SM06 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.26: Low temperature thermomagnetic curve of representative sample from site SM06 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.27: High temperature thermomagnetic curve of representative sample from site SM07 (dashed

line indicates the TC of magnetite [580 ◦C]).

−200 −150 −100 −50 0

Temperature (◦C)

100

120

140

M
a
g
n

et
ic

su
sc

ep
ti

b
il

it
y

(1
0
−

6
S

I)

Figure A.28: Low temperature thermomagnetic curve of representative sample from site SM07 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.29: High temperature thermomagnetic curve of representative sample from site SM08 (dashed

line indicates the TC of magnetite [580 ◦C]).
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Figure A.30: Low temperature thermomagnetic curve of representative sample from site SM08 (dashed

line indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Figure A.31: High temperature thermomagnetic curve of representative sample from site SJ (dashed line

indicates the TC of magnetite [580 ◦C]).
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Figure A.32: Low temperature thermomagnetic curve of representative sample from site SJ (dashed line

indicates the Vervey Transition temperature of magnetite [-150 ◦C]).
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Hysteresis Loops
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Figure B.1: Hysteresis loops of representative samples (gray loop represent uncorrected dia/paramagnetic

data and red loop represent corrected data).
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Figure B.2: Hysteresis loops of representative samples (gray loop represent uncorrected dia/paramagnetic

data and red loop represent corrected data).
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(d) SM4A

Figure B.3: Hysteresis loops of representative samples (gray loop represent uncorrected dia/paramagnetic

data and red loop represent corrected data).
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Figure B.4: Hysteresis loops of representative samples (gray loop represent uncorrected dia/paramagnetic

data and red loop represent corrected data).



Appendix C

Isothermal Remanent Curves

C.1 Rhyolite
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Figure C.1: Rhyolite IRM samples results obtained from MAXUnMix Software (Maxbauer et al., 2016)

(gray circles are the original data, yellow line is the adjusted curve, colored lines represents each component

and colored shaded areas are the error envelopes of 95% confidence intervals associated to each curve).
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C.2 Mafic Dyke
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Figure C.2: Mafic dyke IRM samples results obtained from MAXUnMix Software (Maxbauer et al., 2016)

(gray circles are the original data, yellow line is the adjusted curve, colored lines represents each component

and colored shaded areas are the error envelopes of 95% confidence intervals associated to each curve).
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Figure C.3: Mafic dyke IRM samples results obtained from MAXUnMix Software (Maxbauer et al., 2016)

(gray circles are the original data, yellow line is the adjusted curve, colored lines represents each component

and colored shaded areas are the error envelopes of 95% confidence intervals associated to each curve).
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Appendix D

Paleomagnetic Directions

Table D.1 - Thermal + AF demagnetization directional data of each sample

Sample Demag. Teq. Dec Inc Sample Demag. Teq. Dec Inc

CR1N1 AF (V) 41.40 23.00 CR3H1 T (GC) * 346.0 64.5

CR1A2 AF (GC) 284.90 -20.10 CR4A1 T (V) 42.8 -20.7

CR1N1 AF (GC) 75.70 -63.40 CR4A2 T (V) 62.1 -42.04

CR1B1 T (V) 21.70 6.10 CR4A3 T (V) 59.2 -12.8

CR1D1 T (V) 50.30 -34.00 CR4B3 T (V) 68.9 -22.8

CR1E1 T (V) 31.20 39.80 CR4A1 T (GC) 91.8 62.5

CR1E2 T (V) 35.10 30.00 CR4A2 T (GC) 69.2 52.7

CR1B1 T (GC) 118.50 71.20 CR4B3 T (GC) 108.6 58.5

CR1C1 T (GC) 319.80 17.40 CR4B2 T (V) 74.9 -2.6

CR1C2 T (GC) 321.50 19.80 CR5C1 AF (V) * 53.2 -13.9

CR1E3 T (V) 34.30 22.60 CR5C1 AF (GC) 285.5 -66.5

CR2B2 T (V) 17.4 10.9 CR5E1 AF (GC) 33.2 46.0

CR2C1 T (V) 39.0 -0.1 CR5D1 T (V) 13.2 -15.2

CR2D2 T (V) 24.9 3.6 CR5E2 T (GC) 55.3 40.5

CR2I1 T (V) 17.4 3.2 CR6H2 AF (V) * 28.4 20.3

CR2D2 T (GC) 293.0 21.0 CR6B1 T (V) 20.4 46.6

CR2F1 T (GC) 146.9 16.4 CR6C1 T (V) 21.5 66.1

CR3A1 AF (V) 46.9 -17.0 CR6A1 T (GC) 163.5 28.6

CR3C1 AF (V) 57.6 -3.2 CR6D2 T (GC) 279.0 60.4

CR3A1 AF (GC) 325.3 13.7 CR7B1 AF (V) 31.7 38.4

CR3B1 T (V) 59.7 8.4 CR7B1 AF (GC) 69.3 -46.4

CR3C2 T (V) 97.7 -11.6 CR7A1 T (V) 20.8 24.4

CR3E1 T (V) * 65.6 -3.1 CR7A1 T (GC) 285.3 49.3

CR3E1 T (GC) * 157.2 7.4 CR7D1 T (GC) 303.3 -42.0

(Demag. Teq. = Demagnetization technique used, Alternating Magnetic Field (AF) or

Thermal (T), and analyses procedure, Vetorial (V) or Great Circles (GC); * = Indicates

if the antipode was taken in consideration; Dec = Declination; Inc = Inclination.)
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