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Resumo

SANTOS, E. B. (2024). Modelagem numérica da dinâmica do manto e sua interação

com quilhas cratônicas da litosfera continental, Tese de Doutorado, Instituto de Astrono-

mia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo.

Diferentes modelos de espessura da litosfera baseados em tomografia sísmica indicam

que variações laterais da espessura litosférica podem ser abruptas, especialmente ao longo

das bordas dos crátons, onde a espessura pode variar mais de 100 km ao redor dos limites

da quilha cratônica. Essas variações laterais podem afetar o fluxo do manto astenosférico

durante o movimento das placas litosféricas, o que pode eventualmente impactar o campo

de esforços no interior do manto e da crosta e afetar a evolução topográfica das margens

continentais. A quantificação correta da interação geodinâmica entre a astenosfera e as

quilhas cratônicas envolve processos de escoamento não-lineares e cenários com configura-

ção geométrica complexa. Por essa razão, o uso de códigos numéricos é uma abordagem

natural para estudar esses problemas geodinâmicos. No presente trabalho, modelos numé-

ricos termo-mecânicos foram usados com reologia realista para a crosta e o manto para

avaliar como o fluxo astenosférico sob quilhas cratônicas afetou a topografia e o campo

de esforços no interior da placa litosférica. Foram testados diferentes valores de espessura

para a quilha cratônica e a velocidade relativa entre a litosfera e a base do manto superior.

Foi possível observar que o fluxo horizontal da astenosfera sob a quilha cratônica induz

esforços distensivos na crosta quando o fluxo astenosférico ocorre da litosfera mais fina em

direção ao cráton, definido aqui como “proa cratônica”. Por outro lado, esforços compres-

sivos na crosta são observados na região onde o fluxo astenosférico ocorre do cráton em

direção à litosfera mais fina, uma porção definida aqui como “popa cratônica”. A magni-



tude dos esforços aumenta com maiores velocidades e uma quilha cratônica mais espessa,

alcançando uma magnitude de ±8 - 10 MPa na crosta cratônica nos cenários com uma

quilha cratônica com 200 km de espessura. O fluxo astenosférico sob a quilha cratônica

induz convecção de borda (do inglês edge-driven convection) com maior vigor adjacente à

popa cratônica, onde são observadas perturbações topográficas, especialmente em cenários

com quilha cratônica espessa, resultando em topografia dinâmica negativa de centenas de

metros. Propomos que esse mecanismo de subsidência dinâmica pode explicar parte da

topografia residual negativa observada ao longo da margem sul da Austrália, induzida pelo

rápido movimento para o norte (7,4 cm/ano) da placa combinado com a presença de uma

quilha litosférica espessa no continente. Adicionalmente, a inclinação continental norte-

sul observada na Austrália durante o Mioceno pode ser parcialmente explicada como a

desaceleração da placa e a consequente redução da amplitude da topografia dinâmica no

continente e nas regiões marginais durante os últimos 30 milhões de anos.

Palavras-chaves: esforços intraplacas, modelagem numérica, quilhas cratônicas, covec-

ção do manto



Abstract

SANTOS, E. B. (2024). Numerical modeling of mantle dynamics and its interaction

with cratonic keels of the continental lithosphere, Tese de Doutorado, Instituto de Astro-

nomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo.

Different lithosphere thickness models based on seismic tomography indicate that la-

teral variations of lithospheric thickness can be abrupt, especially along the borders of

cratons, where the thickness can vary more than 100 km around the limits of the crato-

nic keel. These lateral variations can affect the flow of the asthenospheric mantle during

the movement of the lithospheric plates which can eventually impact the stress field in

the interior of the mantle and crust and affect the topographic evolution of continental

margins. The correct quantification of the geodynamic interaction between asthenosphere

and cratonic keels involves non-linear flow and scenarios with complex geometric configu-

rations. For this reason, the use of numerical codes is a natural approach to study these

geodynamic problems. In the present work, thermo-mechanical numerical models were

used with realistic rheology for the crust and mantle to assess how the asthenospheric flow

under cratonic keels affected the topography and intraplate stress field. Different thickness

values for the cratonic keel and the relative speed between the lithosphere and the base of

the upper mantle were tested. It was possible to observe that the horizontal flow of the

asthenosphere under the cratonic keel induces extensional stresses in the crust when the

asthenospheric flow occurs from the thinner lithosphere towards the craton, defined here

as the “cratonic bow”. On the other hand, compressional stresses in the crust are observed

in the region where the asthenospheric flow occurs from the craton towards the thinner

lithosphere, a portion defined here as the “cratonic stern”. The magnitude of the stresses



increases with higher speeds and a thicker cratonic keel, reaching a magnitude of ±8− 10

MPa in the cratonic crust in the scenarios with a cratonic keel with 200 km in thickness.

The asthenospheric flow under the cratonic keel induces edge-driven convection with lar-

ger vigor adjacent to the cratonic stern, where topographic perturbations are observed

especially in scenarios with thick cratonic keel, resulting in negative dynamic topography

of hundreds of meters. I propose that this mechanism of dynamic subsidence can explain

part of the negative residual topography observed along the southern Australian margin,

induced by the fast (∼ 7.4 cm/year) northward movement of the plate combined with

the presence of a thick lithospheric keel in the continent. Furthermore, the north-south

continental tilt observed in Australia during the Miocene can be partially explained as the

slowdown of the plate and consequent reduction of the dynamic topography amplitude in

the continent and marginal regions during the last 30 Myr.

Key-words: intraplate stress, numerical modeling, cratonic keels, mantle convection
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Chapter 1

Introduction

1.1 Thick continental lithosphere and the asthenospheric mantle flow

Plate tectonics is mainly guided by the downward pull of relatively cold oceanic plates

in subduction (Lithgow-Bertelloni and Richards, 1998). In this context, the continen-

tal lithosphere, with thicker crust relative to the oceanic lithosphere, are buoyant and

gravitationally stable, being preserved at the surface in the geological time scale, and the

horizontal movement of the continents in the plate tectonics regime is mainly guided by the

interaction with adjacent oceanic plates. In general, lithospheric plates with a large frac-

tion of continental area present lower horizontal speed relative to oceanic plates (Forsyth

and Uyeda, 1975), indicating that continental plates can exert a relevant drag force re-

sisting the plate movement. Furthermore, the thick continental lithosphere, especially in

cratonic domains, can impose an additional resistance to the horizontal movement of the

lithosphere (Conrad and Lithgow-Bertelloni, 2006). Conversely, the viscous flow of the

asthenosphere around the cratonic keels can impose stress in the lithosphere that can pro-

pagate to the crust. This interaction depends on the rheology of the mantle and the lateral

variation of lithospheric thickness.

The largest lateral variations of lithospheric thickness occur mainly along the edges of

cratonic keels, where the thickness of the lithosphere can reach over 300 km in Archean

cratons (Steinberger and Becker, 2016), significantly thicker than the oceanic lithospheres

(Figure 1.1). In cratonic regions in Africa, South America, North America, and Australia,

the lithospheric thickness surpasses 250 km depth. The stability of cratons for billions of

years is probably a consequence of the distinct chemical composition relative to the mean

composition of the upper mantle, with the cratons more depleted in volatile and mafic
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components (Jordan, 1975; Pollack, 1986). The depletion in volatiles, specially water,

increases the effective viscosity of the depleted mantle, contributing for the rigidity and

stability of cratons (Doin et al., 1997; O’Neill et al., 2008).
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Figure 1.1: Continental lithospheric thickness map showing plate boundaries and the velocity in the
hotspot reference frame. Continental thickness based on Priestley and McKenzie (2013). The plate
boundaries are given by Bird (2003). The velocities are based on the hotspot reference frame HS3- Nuvel
1A from Gripp and Gordon (2002).

Due to the complex rheology of the mantle and geometry of the cratonic keel, the

use of numerical geodynamic models is essential to appropriately simulate the interaction

between the asthenospheric mantle and the base of the continental lithosphere. In the last

decades, many works explored the lateral variation in continental lithospheric thickness

by analyzing the interaction between the continental lithosphere and mantle convection in

numerical models (e.g. Lenardic et al., 2003; Cooper et al., 2004).

One important effect of the geographical variation in lithospheric thickness is induced

by the large lateral temperature differences, where King and Anderson (1998) showed that

such variations in lithospheric thickness can induce small-scale convection cells in the asthe-

nospheric mantle (Figure 1.2). These small-scale convections have been used to explain

intraplate volcanism without the presence of mantle plumes and may contribute to volcanic

activity (King, 2005; King and Ritsema, 2000), and relatively high shear wave velocities
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due to the presence of cold material in downward convective motion (King and Ritsema,

2000). These small-scale convections generated at the edges of the thick lithosphere can

contribute to anomalies in dynamic topography (Shahnas and Pysklywec, 2004; Sacek,

2017). Petersen et al. (2010) verified the influence of small-scale convection on the strati-

graphy of sedimentary basins. Sacek and Ussami (2013) demonstrated how the geometry of

divergent margins can induce differential subsidence along the margin. Salazar-Mora and

Sacek (2021) showed that the lithospheric mantle viscosity and density contrast control

the behavior of the edges of cratonic keels and the development of convective cells in the

asthenospheric mantle adjacent to the lithospheric keel.

Figure 1.2: Edge-driven convection observed in a numerical scenario with a lithosphere with lateral
variation in thickness. The numbers in the axes and isotherms are non-dimensional. Extracted from King
and Anderson (1998).

Additionally, Farrington et al. (2010) investigated how continents with lateral variation

in lithospheric thickness interact with the asthenospheric mantle in different continental

velocity regimes, analyzing how these small-scale convections evolve in 3D models with

linear rheology, showing that the convective pattern under and around the continents

depends on the speed of the plate.

Hu et al. (2017) simulated the flow of the asthenospheric mantle around cratonic keels in

South America, using a linear rheology function of temperature, pressure, and composition,

where continents and cratons are 1000 times more viscous than the asthenosphere, allowing
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them to be preserved during the subduction process. Hu et al. (2017) point out that the

role of cratonic keels in the anisotropy of the mantle is smaller than that of the subducting

plate.

However, the correct representation of the stress field in the lithosphere and the impact

on the topographic evolution due to the interaction of the asthenospheric mantle flow

around a thick continental lithosphere depends on the incorporation of non-linear rheology,

especially in the lithosphere, where non-linear creep flow and plastic behavior dominate

(Burov, 2011).

1.2 The purpose of this work

Aimed to further contribute to the study of the interactions between thick cratonic

lithosphere and the asthenospheric mantle, this work evaluates the interaction between

asthenospheric mantle flow and a thick cratonic lithosphere, taking into account realistic

rheology for the mantle and crust. In this work, I used a thermo-mechanical numerical

model to simulate the relative movement of cratonic keels over the asthenospheric mantle

to evaluate how this motion affects the mantle flow around cratonic regions, modifies the

intraplate stress field, and induces vertical displacements in the lithosphere.

Chapter 2 presents the theoretical principles underlying mantle convection, leading to

the formulation of the key equations for the conservation of mass, momentum, and energy.

Furthermore, it includes a review of the main approximations and constitutive equations

of material properties.

Chapter 3 describes the thermo-mechanical numerical model setup used to simulate the

relative movement of cratonic keels over the asthenospheric mantle. Chapter 4 shows the

application of the model described in the previous chapter evaluating the influence of the

asthenospheric flow under cratonic keels and its impact on the intraplate stress field and

dynamic topography.

Chapter 5 presents a discussion on the implications of the results, especially for a fast-

moving lithosphere (v = 8.0 cm/yr). The results are compared with the Indo-Australia

plate which presents a thick cratonic keel and a high velocity.

Finally, Chapter 6 provides the conclusions of the thesis, highlighting the contributions

of the numerical models presented and offering perspectives for future work.
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The Physics of Mantle Convection

2.1 Introduction

Usually, the term fluid is used to refer to a state of matter, either liquid or gaseous.

However, the definition of a fluid is a material that continuously deforms under applied

shear stress, or external force, and in its tendency to deform irrecoverably (Ricard, 2015).

Therefore, any material with elastic or non-deformable behavior, whether possessing a

crystalline or disordered structure, can undergo deformation when subjected to an external

force or shear stress for a sufficiently prolonged time.

Geologic processes associated with mantle convection typically occur over millions of

years (on the order of 10 My). Over such extended timescales, the mantle, despite being a

solid capable of transmitting shear waves and possessing greater strength than steel, can

be considered as a fluid.

Many materials can behave as solids over a short period and like fluids over a long

period. The rheological behavior of a material can be defined by the Maxwell time (τM), a

characteristic time given by the ratio between the dynamic viscosity (η) and the elasticity

(µr):

τM =
η

µr

(2.1)

Typical values of dynamic viscosity and elasticity in the mantle are η ≈ 1021 Pa.s and

µr ≈ 1011 Pa, so the Maxwell time for the mantle is of the order of a few hundreds or

thousands of years.

The physics of fluid behavior is based on the continuum hypothesis, so quantities such

as density, temperature, and velocity must be defined continuously at all points. The
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following sections will describe the mathematical formulations for fluid dynamics in mantle

convection.

2.2 Heat Transfer

The rheology of solids is a temperature-dependent function (Turcotte and Schubert,

2014). The rheology of mantle rocks is directly related to temperature as a function of

depth, which, in turn, depends on the rate at which the Earth’s interior dissipates heat

through its surface. Thus, to understand the mechanical behavior of the Earth, it is

necessary to understand its thermal structure. In this chapter, the basic equations of heat

transfer through thermal conduction will be introduced.

2.2.1 Types of Heat Transfer

There are three mechanisms for heat transfer, they are conduction, convection, and

radiation. Heat transfer by conduction is a diffusive process and occurs through the step-

by-step transmission of the kinetic energy of a molecule when it collides with other mo-

lecules. Thus, for heat conduction to occur, there must be a temperature gradient. Heat

conduction occurs without noticing the movement of matter on a macroscopic scale.

Unlike thermal conduction, thermal convection is associated with movements in the

material medium. It occurs when a hotter fluid enters a region of lower temperature, and

thus heats that region. Similarly, when a cooler fluid enters a warmer region it will cool

the region, producing mass displacement.

The transfer of heat by thermal radiation occurs through electromagnetic waves emitted

by heated bodies. Examples of this type of heat transfer include the thermal radiation from

the Sun and incandescent lamps.

In the interior of rocky planets, the free path of electromagnetic waves is very small,

being absorbed by the rock and retransmitted essentially by thermal conduction. Conse-

quently, the transport of heat within the planet can be effectively represented by thermal

conduction and convection, and it is reasonable to neglect thermal radiation for the study

of the thermal dynamics of the planet.
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Figure 2.1: Heat flow diagram in a rectangular box. Extracted from Turcotte and Schubert (2014).

2.2.2 Fourier’s Law

Fourier’s law, also known as the law of thermal conduction, is the principle for the

transport of heat by conduction. Such a law states that the heat flow through a material

is proportional to the negative temperature gradient.

q = −kgrad(T ) (2.2)

or in tensor form

qi = −k
dT

dxi

(2.3)

where k is the coefficient of thermal conductivity. The minus sign in 2.3 is because heat

flows in the direction of decreasing temperature.

2.2.3 Heat Conduction in the Steady State

Consider a rectangular box with infinitesimal thicknesses δxi, δxj and δxk as shown in

Figure 2.1.

We can write the heat flux in each direction as qxi
. The rate at which heat flows into

the box in the direction xi can be expressed as qxi
(xi)δxjδxk and the rate at which heat
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flows out of the box in the same direction as qxi
(xi + δxi)δxjδxk.

Thus, the heat flux leaving the box can be written as

[qxi
(xi + δxi)− qxi

(xi)] δxjδxk+

+
[
qxj

(xj + δxj)− qxj
(xj)

]
δxiδxk+

+ [qxk
(xk + δxk)− qxk

(xk)] δxiδxj

(2.4)

or in tensor form

[qxi
(xi + δxi)− qxi

(xi)] δxjδxk (2.5)

Since δxi, δxj and δxk are infinitesimals we can expand the terms qxi
(xi+∂xi) through

the Taylor series. So, we can write the terms as

qxi
(xi + δxi) = qxi

(xi) + δxi
∂qi
∂xi

+ ... (2.6)

Using the Taylor series approximation given by 2.6 in 2.5 we obtain

qxi
(xi + δxi)− qxi

(xi) =
∂qxi

∂xi

δxiδxjδxk (2.7)

replacing 2.3 in the above equation, we have:

δxiδxjδxk

[
−k

∂

∂xi

(
∂T

∂xi

)]
(2.8)

The equation 2.8 gives the flow leaving the rectangular box, per unit of time and

unit of area. As we are dealing with a stationary case, i.e., without variations in flow or

temperature over time, if the flow leaving the box is non-zero, this heat must be generated

internally. Thus, if we consider H to be the rate of heat production per unit of mass and

volume, then the heat generated internally is given by ρHδxiδxjδxk. So, from 2.8 we have

δxiδxjδxk

[
−k

∂

∂xi

(
∂T

∂xi

)]
= ρHδxiδxjδxk (2.9)

−k
∂

∂xi

(
∂T

∂xi

)
= ρH (2.10)

if there are no heat sources inside the box (H = 0) and considering k constant the equation



Section 2.2. Heat Transfer 31

turns into the Laplace’s equation

∂

∂xi

(
∂T

∂xi

)
= 0 (2.11)

2.2.4 Time Dependent Heat Conduction

In the previous section, we obtained an equation that represents the thermal conduction

of heat for a steady state, however many of the geological problems involving thermal con-

duction are time-dependent. Thus, it is necessary to find a relationship to time-dependent

thermal conduction.

Starting from equation 2.9, we consider a case in which there is no heat production

inside the box (H = 0). Thus, a decrease in the temperature of the medium must occur so

that the conservation of energy is not violated. This decrease in temperature is proportional

to ∂T/∂t, so c is the specific heat of the medium, a volume element of this box δxiδxjδxk

needs an energy flow per unit of time given by

−ρc
∂T

∂t
δxiδxjδxk (2.12)

the negative sign indicates that the temperature of the box is decreasing as the heat flow

is leaving the box, to maintain this rate of decrease in temperature. Thus, we must add

the above equation to the right side of equation 2.9, thus obtaining

k
∂

∂xi

(
∂T

∂xi

)
= ρc

∂T

∂t
(2.13)

this equation is known as the diffusion equation and can commonly be written as

∂T

∂t
= κ

∂

∂xi

(
∂T

∂xi

)
(2.14)

where κ is the thermal diffusivity and is given by

κ =
k

ρc
(2.15)

The heat transport presented in equation 2.14 is valid in a medium where thermal

convection can be neglected, as in the lithosphere which behaves essentially like a solid in
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geological time. However, to adequately represent the heat transport in the asthenospheric

mantle, thermal convection must be incorporated, modifying the heat equation. This

modification of the heat transport equation together with the mathematical formulation

of fluid dynamics will be presented in the next chapter.

2.3 Fluid Dynamics

It is known that the sub-lithospheric mantle behaves like a fluid on geological times-

cales (Schubert et al., 2001). Thus, to study convective processes in the Earth’s mantle,

knowledge of fluid mechanics is necessary. In this chapter, the basic equations governing

the movement of fluid will be introduced.

2.3.1 Continuity Equation

Let’s consider a volume V of space. We can write the mass of fluid present in this

volume as:

∫
V

ρdV (2.16)

where ρ is the fluid density given as a function of the position xj (j = 1, 2, 3, the first two

representing the horizontal components, and the third the vertical component). The mass

of fluid per unit of time passing through an element ds of the surface around V can be

expressed by ρu ·ds where u is the velocity of the fluid, and the direction of ds is along the

normal. By convention, we assume ds with the normal pointing outward, and therefore

ds is positive if fluid is leaving volume V , and negative if fluid is entering in V . Thus, to

obtain the total mass of fluid leaving the volume V per unit of time, we must integrate

across the entire closed surface around V , as follows:

∮
ρuidsi (2.17)

The change in mass contained in volume V can be written as

− ∂

∂t

∫
ρdV (2.18)
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the negative sign indicates that the mass is leaving the volume V . Thus, from equations

(2.17) and (2.18) we have:

∂

∂t

∫
ρdV = −

∮
ρuidsi (2.19)

The surface integral can be transformed into a volume integral by the Divergent The-

orem ∮
ρuidsi = −

∫
∂

∂xi

(ρui)dV (2.20)

and so we have ∫ [
∂ρ

∂t
+

∂

∂xi

(ρui)

]
dV = 0 (2.21)

Since this integral must be true for any volume, the integrand must be zero. Therefore

∂ρ

∂t
+

∂

∂xi

(ρui) = 0 (2.22)

This is the continuity equation, also called the conservation of mass.

2.3.2 Euler’s equation

Let us now consider the volume of the fluid. The total force acting on this volume is gi-

ven by the pressure integral, taken on the surface surrounding the volume. In mathematical

terms:

−
∮

Pds (2.23)

where P is the pressure. We can again use the Divergent Theorem and transform this

integral into a volume integral

−
∮

Pds = −
∫

grad(P )dV (2.24)

We can then say that a force −grad(P ) acts on a unit volume of the fluid. Thus, we

can write Newton’s second law for a fluid volume element by equating the force −grad(P ),

with the mass per unit volume (ρ, density) times the acceleration (du/dt), so we have:

ρ
du

dt
= −grad(P ) (2.25)
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or in tensor form

ρ
dui

dt
= −∂P

∂xi

(2.26)

The derivative on the left side of the above equation does not represent the change

in velocity of a fixed point in space, but the change of a given fluid element as it moves

through space. We can write this derivative as

dui

dt
=

∂ui

∂t
+ uk

∂ui

∂xk

(2.27)

Substituting equation (2.27) into equation (2.26) we get

∂ui

∂t
= −uk

∂ui

∂xk

− 1

ρ

∂P

∂xi

(2.28)

The above equation is the fluid’s equation of motion, also known as Euler’s equation.

2.3.3 Equation of motion of a viscous fluid

So far we have only considered the case of an ideal fluid without viscosity. The conti-

nuity equation (2.22) is valid for any fluid, however the Euler equation (2.28) needs some

changes when dealing with viscous fluids.

When dealing with a viscous fluid, we must take into account the internal friction

between fluid particles, as a function of the viscosity of the medium. Thus, we must sum

this contribution due to viscosity in the fluid’s equation of motion.

ρ

(
∂ui

∂t
+ uk

∂ui

∂xk

)
= −∂P

∂xi

+
∂σ′

ik

∂xk

(2.29)

The σ′
ik tensor is called the viscosity stress tensor. This tensor is usually written as

(Landau and Lifshitz, 1987):

σ′
ik = η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3
δik

∂ul

∂xl

)
(2.30)

where η is the viscosity of the fluid and δik is the Kronecker delta. We can write the second

term of the equation as:
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∂σ′
ik

∂xk

=
∂

∂xi

[
η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

)]
(2.31)

Therefore, the equation of motion for a viscous fluid can be written as:

ρ

(
∂ui

∂t
+ uk

∂ui

∂xk

)
= −∂P

∂xi

+
∂

∂xi

[
η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

)]
(2.32)

This is the general form of the equation of motion for a viscous fluid, also known as

the Navier-Stokes equation (Landau and Lifshitz, 1987).

2.3.4 Energy Equation

Making use of the law of conservation of energy, we need to take into account all energy

gains and losses E that occur in a given volume V of fluid per unit of time. So we have:

∂

∂t

∫
V

ρEdV =

∫
S

uiσikdSj +

∫
V

ρuiFidV −
∫
S

k
∂T

∂xk

dSk −
∫
S

ρEukdSk +

∫
V

ρHdV (2.33)

where σik is the stress tensor and Fi is an external force acting on the fluid.

The first term on the right side of the equation (2.33) is the rate of work done in the

edge region. The second term represents the work done by external forces on each element

of the fluid contained in V . In the third term, we have the rate of heat conduction through

the surface S of the volume V , and k is the heat conduction coefficient. The fourth term

is the rate at which energy convection through S by the prevailing motion. And finally,

we have the rate of energy obtained by internal sources of heat (for example, heat from

the decay of radioactive elements). We can write the first term as follows:

∫
S

uiσikdSj =
1

2

∂

∂t

∫
V

ρu2
i dV +

1

2

∫
S

ρu2
iukdSk −

∫
V

ρuiFidV +

∫
V

ΦdV (2.34)

where

Φ =
∂ui

∂xk

σik (2.35)

is called a viscous dissipation function.

The energy E can be written as:

E =
1

2
u2
i + cV T (2.36)
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where cV is the specific heat coefficient with constant volume and T is the temperature.

In this way we can write the fourth term of the equation (2.33) as follows:

−
∫
S

ρEukdSk = −
∫
S

ρ

(
1

2
u2
i + cV T

)
ukdSk = −1

2

∫
S

ρu2
iukdSk −

∫
V

∂

∂xk

(ρukcV T )dV

(2.37)

Using the divergence theorem we can write the third term of the equation (2.33) as

∫
S

k
∂T

∂xk

dSk =

∫
V

∂

∂xk

(
k
∂T

∂xk

)
dV (2.38)

Substituting equations (2.34), (2.37) and (2.38) in equation (2.33):

∫
V

∂

∂t
(ρcV T )dV =

∫
V

∂

∂xk

(
k
∂T

∂xk

)
dV +

∫
V

ΦdV −
∫
V

∂

∂xk

(ρcV Tuk)dV +

∫
V

ρHdV (2.39)

As the above equation must be valid for any volume V , we have:

∂

∂t
(ρcV T ) +

∂

∂xk

(ρcV Tuk) =
∂

∂xk

(
k
∂T

∂xk

)
+ Φ+ ρH (2.40)

We can also write the above equation in terms of cP (specific heat coefficient with constant

pressure)

ρcP

(
∂T

∂t
+ uk

∂T

∂xk

)
− αT

(
∂p

∂t
+ uk

∂p

∂xk

)
=

∂

∂xk

(
k
∂T

∂xk

)
+ Φ+ ρH (2.41)

where α is the thermal expansion coefficient. Equation 2.41 is the energy conservation

equation for a fluid.

2.4 Fluid Dynamics and Mantle Convection

The previous section (2.3) presented the general fluid dynamics equations. However, for

the application of these equations to the interior of the Earth, it is interesting to analyze

these equations and identify what they represent in this context.
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In the following sections, an analysis of each of the conservation equations presented

above will be presented.

2.4.1 Mass Conservation

In the conservation of mass given in equation (2.22), the first term is the only one that

is explicitly time-dependent. It describes the time required for a region where the pressure

differs from the hydrostatic pressure to expand or compress against viscous forces. Also

called viscous isentropic relaxation time scale (Curbelo et al., 2019). This viscous relaxation

timescale is, in general, much shorter than the timescales of convective processes in the

mantle.

Thus, many of the geodynamic models end up not including this term (Jarvis and

Mckenzie, 1980), then we can express the equation (2.22) as:

∂

∂xi

(ρui) = 0 (2.42)

The above equation states that the variation between the mass input and output of

a given volume of material is zero. Density may still vary if the material is advected to

another region with different pressures, but density variations will always be associated

with material movement to a new location. In this approximation, large density variations

are considered, as is the case of the Earth’s mantle where the density varies approximately

65% from the Earth’s surface to the mantle interface with the (Schubert et al., 2001) core.

In some cases, even this density variation is small, as in the case of the Earth’s upper

mantle, where the average density varies by less than 20%. Thus, some geodynamic models,

especially models that use smaller depths, make use of another approximation, assuming

that the material is incompressible, i.e., the density is constant. For an incompressible

fluid the equation (2.22) can be rewritten as:

∂ui

∂xi

= 0 (2.43)

2.4.2 Momentum Conservation

The Navier-Stokes equation (2.32) is a general equation for fluid dynamics. The terms

on the left side of the equation are the terms that govern the effects of inertia, describing the
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acceleration of the material. However, in the Earth’s mantle, the movement of materials is

so slow that the effects of inertia are negligible. The timescales of convective processes in

the mantle are so large that we can neglect these acceleration effects. Thus, the equation

(2.32), can be rewritten as:

−∂P

∂xi

+
∂

∂xi

[
η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

)]
= 0 (2.44)

Removing the inertia term from the momentum equation and applying one of the two

common approaches to the conservation of mass (equations 2.42 and 2.43), we have a

description of an instantaneous problem. Thus, the velocity and pressure solution does

not depend on evolutionary history and can be solved for any given time unless explicitly

incorporated by material properties.

The equations 2.32 and 2.44 consider only the stresses applied to the surface of the

material. Thus, it is necessary to add the external forces acting on the material. In

mantle convection generally, the force of gravity is the only one considered in the models,

as its contribution is much greater than that of other forces, such as the electromagnetic

force or the Coriolis force. Adding the gravitational force, we can write the momentum

conservation equation as:

−∂P

∂xi

+
∂

∂xi

[
η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

)]
+ ρg = 0 (2.45)

2.4.3 Energy Conservation

In the energy conservation equation (2.41), the first term on the left side of the equation

represents changes in thermal energy over time, such changes can be due to numerous

different processes. The second term on the left side of the equation accounts for advective

heat transport, i.e., the transport of thermal energy with the movement of the material.

Thus, it depends on the velocity at which the material is moving and on the temperature

gradient.

The third and fourth terms on the left side of the equation represent adiabatic heating,

i.e., they describe how the temperature of the material varies when it is compressed or

expanded due to temperature variations, with no exchange of energy with the surrounding

medium during the process. Consequently, the work done to compress the material is
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released as heat. As the pressure inside the Earth varies mainly due to the increase in

lithostatic pressure with depth, we usually neglect the time-dependent term. Thus, the

adiabatic heating term of the equation (2.41), can be expressed as:

αTuk
∂P

∂xk

(2.46)

The first term on the right side of the equation is the heat conduction term. The

remaining terms in the equation (2.41) describe other thermodynamic processes that may

be significant for mantle convection.

The second term on the right side of the equation (2.41) describes viscous dissipation

or frictional heating. This term describes the energy released as heat when the material

is deformed. The greater the stress required to deform the material and the greater the

deformation, the greater the heat released by this process.

And finally, the last term of the equation (2.41) represents the internal heat. Generally,

this heat is due to the radioactive decay of unstable isotopes inside the Earth. Thus, this

process is more significant in regions where the concentration of elements that produce

heat is higher, such as the continental crust.

Other processes and heat sources may be present in the mantle, however, their contri-

butions are smaller, and in most cases, they are neglected, to simplify the resolution of the

problem.

2.5 Approximations of the Equations

In the 2.4 section some of the simplifications that can be adopted in the mass, momen-

tum, and energy conservation equations when applied to mantle convection were presented,

allowing the choice of which physical processes will be included. In geodynamics, some

other approximations are commonly used (Schubert et al., 2001; Gassmöller et al., 2020).

2.5.1 Anelastic Liquid Approximation

The anelastic liquid approximation (Jarvis and Mckenzie, 1980) is based on two pre-

mises. The first assumes that lateral variations in density are small compared to the

reference density profile (deep-dependent), and the second is that these variations in the

depth-dependent density profile can be disregarded in the equations of conservation of
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mass (2.22) and energy (2.41). Only the buoyancy term in the momentum equation (2.32)

will use a temperature and pressure-dependent density, and this density is approximated

by a Taylor series expansion.

This approximation is commonly used in whole-mantle convection models, where there

are large variations in surface density up to the boundary between the lower mantle and

the outer core, with fluid compressibility being an important effect to consider.

2.5.2 Truncated Anelastic Liquid Approximation

The truncated anelastic liquid approximation (Jarvis and Mckenzie, 1980) has the same

premises as the anelastic liquid approximation, but it assumes that changes in density due

to pressure effects are orders of magnitude smaller than those due to temperature. In this

way, the pressure term in the buoyant forces is neglected in the moment equation.

This consideration implies an imbalance between the energy dissipation calculated by

the Stokes equation and the heat dissipation in the energy equation, therefore, this appro-

ximation should not be used when the energy dissipation is an important factor for the

model (Leng and Zhong, 2008; Alboussière and Ricard, 2013).

2.5.3 Boussinesq approximation

The Boussinesq approximation (Rayleigh, 1916) is a simplification of the anelastic liquid

approximation, where the reference temperature and density are assumed to be constants.

That is, changes in density are considered to be so small that it is ignored in all terms

except the terms where it is multiplied by gravity (in the momentum equation 2.32). This

simplification causes the mass conservation equation to assume its incompressible form.

Furthermore, this approximation disregards adiabatic and viscous dissipation heating in

the energy equation (2.41).

This is a good approximation in cases where the density variations are small, and

the modeled processes do not cause significant amounts of adiabatic heating or viscous

dissipation. The Boussinesq approximation is widely used in lithospheric scale models.

2.5.4 Extended Boussinesq Approximation

The extended Boussinesq approximation (Christensen and Yuen, 1985) uses the same

premises as the Boussinesq approximation without neglecting adiabatic heating and vis-
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cous dissipation. However, this approximation should only be used in models with small

adiabatic temperature changes because even considering adiabatic heating, the associated

volume and density variations are not considered, which leads to the generation of artificial

energy in the model.

2.5.5 Dimensionless Equations

The laws of physics cannot vary according to the unit used for physical quantities.

That said, it is valuable to express the three conservation equations in terms of dimensi-

onless quantities, i.e., to establish a relationship between dimensional and dimensionless

quantities and to verify what happens in the conservation equations when we apply these

relationships.

The conservation equations (2.22), (2.32) and (2.41), when applying the approximation

of a truncated anelastic liquid can be written as:

∂ρui

∂xi

= 0 (2.47)

−∂P

∂xi

+
∂

∂xi

[
η

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂ul

∂xl

)]
+ δρg = 0 (2.48)

ρcP

(
∂T

∂t
+ uk

∂T

∂xk

)
= −αTρgu3 + ρcP

∂

∂xk

(
k
∂T

∂xk

)
+ Φ+ ρH (2.49)

We can then write δρg as:

δρg = −ρgα(T − T0) (2.50)

Let’s define the dimensionless constants to be:
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xi = x′
il0 (2.51)

ui = u′
i

k0
l0

(2.52)

t = t′
l20
k0

(2.53)

ρ = ρ′ρ0 (2.54)

α = α′α0 (2.55)

g = g′g0 (2.56)

η = η′η0 (2.57)

k = k′k0 (2.58)

P = P ′η0k0
l20

(2.59)

cP = c′P cP0 (2.60)

T0 = ∆TT ′
0 (2.61)

T = ∆T (T ′ − T ′
0) (2.62)

H =
k0
l20
cP0∆TH ′ (2.63)

where the terms with the lines are the dimensionless terms. Applying the above rela-

tions in the conservation equations we obtain:

∂ρ′u′
i

∂x′
i

= 0 (2.64)

−∂P ′

∂x′
i

+
∂

∂x′
i

[
η′
(
∂u′

i

∂x′
k

+
∂u′

k

∂x′
i

− 2

3

∂u′
l

∂x′
l

)]
+Raρ

′g′α′T ′δi3 = 0 (2.65)

ρ′c′P

(
∂T ′

∂t′
+ u′

k

∂T ′

∂x′
k

)
= −Di(T

′ + T ′
0)α

′ρ′g′u′
3 + ρ′c′Pk

′∂
2T

∂x2
k

+
Di

Ra

Φ′ + ρ′H ′ (2.66)

And these are the conservation equations for dimensionless quantities, where Ra and

Di are, respectively, the Rayleigh number and the dissipation number given by:
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Ra =
ρ0g0α0∆T l30

k0η0
(2.67)

and

Di =
α0g0l0
cP0

(2.68)

The Rayleigh number is a quantity that regulates the regime of a fluid. For small values

of Ra, the perturbations decrease with time, and there will be no convective movements.

For larger Ra, those perturbations will increase exponentially with time, generating con-

vection in the fluid. Thus, it can be said that large values of Ra favor fluid convection.

Turcotte and Schubert (2014) show that there is a critical value Racr ≈ 600 − 3000 that

characterizes the beginning of convection for a given fluid and that the Ra number for

the mantle is of the order of 107 which is much greater than the minimum Racr to start

thermal convection. It was this calculation that led Arthur Holmes in 1931 to propose that

mantle convection was responsible for driving continental drift.

The dissipation number compares the natural range of variations in temperature with

the thickness layer l0 (Ricard, 2015). This number is only used in geophysics and astrophy-

sics problems because it is infinitely small for other laboratory problems. For the Earth’s

mantle, it is approximately 0.5 (Ricard, 2015).

2.6 Constitutive Equations: Material Properties

In the previous sections, we described the equations that govern fluid dynamics, and

how we can incorporate them into the Earth’s interior study. However, it is also necessary

to consider how materials in the Earth’s interior behave under external conditions and

forces. The so-called constitutive equations relate the material properties with the variables

of the solutions of the conservation equations, such as temperature and pressure.

Which of these relationships and material properties are important to incorporate de-

pends on what you intend to study. For example, as buoyancy is one of the main forces

governing the flow of matter on Earth, it is often important to consider how density depends

on other variables such as pressure and temperature and to include such dependencies in

the equation for the conservation of momentum. Another example would be the studies of

the lithosphere and the crust, where the relationships between stress and deformation are
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crucial for the evolution of the modeled problem.

2.6.1 Rheology in the Earth’s Interior

Rheology is the study of the deformations and flow of matter when exposed to stress.

This relationship between stresses and strains is present in the equations of conservation

of momentum (2.32) and energy (2.41)

A material when subjected to stress can undergo deformations in different ways. The

main types of deformation that occur in rocks inside the Earth will be discussed below.

2.6.2 Elastic Deformation

Elastic deformation is a reversible deformation, when we remove the stresses that caused

the deformation, it will return to its previous shape. In elastic deformation, the stress

tensor and the strain tensor follow Hooke’s Law (Landau et al., 1986).

For homogeneous and isotropic materials, this relationship is expressed as:

σij = 2µϵij + λδijϵkk (2.69)

where µ and λ are the first and second parameters of Lamé, respectively, and ϵ is the

strain tensor. Lamé parameters describe how much the material deforms elastically when

subjected to shear stresses.

2.6.3 Viscous Deformation

Viscous deformations are continuous and irreversible deformations suffered by the ma-

terial when subjected to stress.

The stress tensor can be written using the viscosity stress tensor equation (2.30) as:

σik = −Pδij + σ′
ik (2.70)

where δij is the Kronecker delta. Or in terms of the strain rate tensor:

σik = −Pδij + 2ηϵ̇′(u) (2.71)

where ϵ̇ is the strain rate tensor, and the line indicates the deviatoric portion of the
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Figure 2.2: A diagram representing the diffusion creep mechanism. The blank spaces are vacancies on
the crystalline lattice and the arrows represent the direction an atom moves from a to b, from b to c, and
from c to d. Extracted for Turcotte and Schubert (2014)

tensor, i.e., the part where the shape changes refer. The strain rate tensor is directly

related to the fluid velocity gradient and can be defined as (Schubert et al., 2001):

ϵ̇′(u) =
1

2
(∇u+∇uT ) (2.72)

The strain rate tensor describes both volume and shape changes in the material.

In the Earth’s interior, this is the dominant process of rock deformation on large time

scales, such as mantle convection. Although the terrestrial mantle presents convective

movements, this does not mean that the mantle is liquid. The mantle rocks are solid,

but those crystalline rocks, when subjected to high pressures and temperatures, cease to

present rigidity and begin to viscously deform when subjected to great stress for a long

time. This deformation process is called crystalline drag.

In studies of mantle convection, the two main forms of crystalline drag are diffusion

creep and dislocation creep.

In diffusion creep, vacancies, i.e., places in the crystal lattice where an atom is missing,

migrate through the crystal. These imperfections in the crystal lattice move through the

mineral grains generating large deformations over millions of years (Turcotte and Schubert,

2014). This process is the dominant deformation mechanism in the lower mantle.
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Figure 2.3: A diagram representing the dislocation creep mechanism. We can see the entire line of atoms
dislocating through the crystalline lattice when under applied stress. Extracted for Turcotte and Schubert
(2014)

In dislocation creep, the defects in the lattice are not just atoms, but an entire line

of atoms that will dislocate when subjected to stresses (Turcotte and Schubert, 2014).

This mechanism is very sensitive to the stresses applied to the rocks, and as a result, the

relationship between stresses and strain rate is no longer linear and starts to be exponential.

Such mechanisms can be incorporated assuming a viscosity η given by the following

Arrhenius equation:

η = Aϵ̇
1−n
n

II dmexp

(
E∗ + PV ∗

RT

)
(2.73)

where E∗ and V ∗ are activation energy and activation volume per mole, p and T are

pressure and temperature, R is the gas constant, d is the grain size, m is the grain size

exponent, J2 is the second invariant of the deviatoric strain rate tensor, n is the exponent

of the deviatoric strain rate tensor, and the coefficient A is a coefficient which varies

depending on the amount of water, molten material and mineralogy. The second invariant
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ϵ̇II of the deviatoric tensor can be written as

ϵ̇II =

(
ϵ̇′ij ϵ̇

′
ij

2

) 1
2

(2.74)

and ϵ̇′ij are the components of the deviatoric strain rate tensor ϵ̇.

Considering a viscosity dependent only on temperature and depth and also assuming

that there is no significant variation in the size of the grains, i.e., d is constant and that

there is no dislocation creep (n = 0), resulting in a Newtonian fluid, i.e., the viscosity is

independent of the state of mantle tension. Thus, the equation 2.73 reduces to

η = η0exp

(
E∗ + PV ∗

RT

)
(2.75)

where η0 is the reference viscosity.

2.6.4 Brittle Deformation

Brittle deformation, being a type of plasticity, is an irreversible deformation where a

rock fracture occurs, such as geological faults. This type of deformation is predominant in

the colder portions, under lower lithostatic pressures of the Earth, and essentially in the

shallower portions of the lithosphere (crust and upper part of the mantle).

In this deformation, the crystal lattice breaks, and a fault occurs in the rock, which

can be on the microscopic scale or extend up to kilometers. By Byerlee’s Law (Byerlee,

1968, 1978), brittle deformation occurs when the stress reaches the limit given by:

σyield = c0 + µp (2.76)

where c0 is the internal cohesion of the rock, and µ is the coefficient of friction of the

rock.

Another way to represent this behavior in rocks is through the Drucker-Prager criterion

(Drucker and Prager, 1952), which can be written as:

σyield = c0 cosϕ+ P sinϕ (2.77)

where ϕ is the internal angle of friction.
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Considering the relationships between stresses and deformations of materials is not a

simple task, in addition, these relationships can be complex, and deformations can still

occur as a combination of elastic, viscous, and brittle deformation on Earth.

2.6.5 Transport Equation

In addition to pressure, temperature, and velocity, there may be other important con-

ditions for the evolution of the problem studied, such as the variation in the chemical

composition of the material.

When considering thermochemical models, taking into account the compositional va-

riation, it is necessary to include, together with the conservation equations, a transport

equation. This equation describes the motion of the compositions considering the advective

processes in the Earth’s mantle. This equation can be expressed as (Gerya, 2019):

∂f

∂t
+ uif,i = 0 (2.78)

where f is the compositional field. This advection equation assumes that for a given

location, changes in composition over time are caused by the transport of material by the

stream with velocity v.



Chapter 3

Model Description

In this work, I aim to evaluate the interaction between the asthenospheric mantle flow

and a thick cratonic lithosphere, taking into account realistic rheology for the mantle and

crust. I used a thermo-mechanical numerical model to simulate the relative movement

of cratonic keels over the asthenospheric mantle to evaluate how this motion affects the

mantle flow around cratonic regions, modifies the intraplate stress field, and induces vertical

displacements in the lithosphere.

The sublithospheric mantle behaves like a fluid on geological timescales (Schubert et al.,

2001). The numerical simulation of mantle convection to reproduce the evolution of a

cratonic lithosphere interacting with the sublithospheric mantle consists of solving the

differential equations related to the conservation of mass, momentum, and energy (Zhong

et al., 2007), respectively:

ui,i = 0 (3.1)

σij,j + giρ = 0 (3.2)

∂T

∂t
+ uiT,i = κT,ii +

H

cpρ
+

uigiαT

cp
(3.3)

where

σij = −Pδij + η(ui,j + uj,i) (3.4)
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ρ = ρ0(1− α(T − T0)) (3.5)

ui is the i-th component of velocity, η the viscosity, T is the temperature, ρ0 is the reference

density at T = T0 = 0◦C, P is the pressure, t time, σij is the stress tensor, κ is the thermal

diffusivity, g the acceleration of gravity, α the coefficient of thermal expansion, H the

radiogenic heat production per unit of mass, cp the specific heat and δi3 the Kronecker

delta (Table 3.1). The repeated indices mean the sum, and the indexes after the comma

represent the partial derivative of the respective spatial coordinate.

Table 3.1 - Fixed parameters and their respective values used in numerical simulations. Values taken
from Sacek (2017).

Parameter Description Value

α Coefficient of thermal expansion 3.28× 10−5 ◦C−1

κ Thermal Diffusivity 1.0× 10−6 m2/s
Tb Basal temperature 1500 ◦C
Ttop Top temperature 0 ◦C
R Gas constant 8.31 J/mol K
g Acceleration of gravity 9.8 m/s2
cp Specific heat 1250 J/kgK

In Equation 3.3, the first term on the left side corresponds to the local temperature

variation. The second term corresponds to the contribution of advective movements. The

first term on the right side of the equation represents thermal diffusivity, and the second

term on the right corresponds to radiogenic heat production (internal heat production).

The last term in the energy equation is related to the adiabatic heating.

When considering the compositional variation, it is necessary to include, together with

the conservation equations, a transport equation. This equation describes the motion of

the material compositions considering the advective processes in the Earth’s mantle. One

can express the transport equation as:

∂C

∂t
+ uiC,i = 0 (3.6)

where C is the compositional field presented in Equation 3.7.

I used the computational code Mandyoc (Sacek et al., 2022) in the present work. To

numerically solve the mass and momentum conservation equations, this code used the
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finite element method (Zhong et al., 2007). The energy conservation equation was solved

using the finite element method with the Petrov-Garlekin streamline-upwind formulation

proposed by Brooks and Hughes (1982). The code is parallelized using the Portable,

Extensible Toolkit for Scientific Computation (PETSc) (Balay et al., 2022).

I used visco-plastic rheology where the effective viscosity ηeff is calculated by the

combined effect of plastic and viscous rheology. The viscous component (ηvisc) is given by:

ηvisc = C A
1
n ε̇

1−n
n

II exp

(
Ea + V P

nRT

)
(3.7)

where C is a compositional scaling factor of viscosity, n is the power law exponent, A is the

pre-exponential scaling factor, ε̇II =
(
ε̇
′
ij ε̇

′
ij/2

)1/2 is the square root of the second invariant

of the strain rate tensor, R is the universal gas constant, and Ea and V are the activation

energy and volume respectively (Table 3.2).

For the plastic regime, the brittle behavior is obtained when the stress reaches the limit

given by the Drucker-Prager criterion (Drucker and Prager, 1952).

σyield = c0 cosϕ + P sinϕ (3.8)

where c0 is the internal cohesion of the rock, and ϕ is the angle of internal friction. Plastic

strain softening is also taken into account (Figure 3.1c), with variable ϕ and c0 as a function

of cumulative deformation. The plastic component (ηplast) is given by:

ηplast =
σyield

2 ε̇II
(3.9)

Thus, the effective viscosity (ηeff ) is given by a combination of the plastic and viscous

(Moresi and Solomatov, 1998) components, as:

ηeff = min(ηplast, ηvisc) (3.10)

The free surface is simulated by the sticky-air approach (Crameri et al., 2012) where a

layer of low density and low viscosity is inserted above the upper crust to emulate the air

and the topographic response is obtained by mapping the interface between the air layer

and upper crust.

The composition and the cumulative strain are tracked through time by particles that
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permeate each finite element of the domain. Initially, each element contains 40 particles

randomly distributed.

Table 3.2 - Rheological parameters of numerical scenarios according to respective layer.

Description Symbol Unit Air Upper Crust Lower Crust Lithospheric Mantle Asthenosphere
Creep flow law − − − Wet quartz[1] Wet quartz[1] Dry olivine[2] Wet olivine[2]

Power law exponent n − 1 4 4 3.5 3/1[5]

Scale Factor C − 1 1 10 1 1
Reference density ρ0 kg/m3 1 2700 2800 3354 3378
Pre-exponent constant A Pa−n/s 1.0×10−18 8.574×10−28 8.574×10−28 2.4168×10−15 1.393×10−14/66250[5]

Activation Energy Ea kJ/mol 0 222 222 540 429/240000[5]

Activation Volume V m3/mol 0 0 0 25×10−6 15×10−6/5×10−6[5]

Heat Production[3] H W/kg 0 9.26×10−10 2.86×10−10 9.0×10−12 0
Cohesion[4] c0 MPa − 20→4 20→4 20→4 20→4
Internal friction angle[4] ϕeff (ε) − − 15◦→2◦ 15◦→2◦ 15◦→2◦ 15◦→2◦

Strain softening interval[4] − − − 1.05→0.05 1.05→0.05 1.05→0.05 1.05→0.05

[1]: Extracted Gleason e Tullis (1995). [2]: Extracted from Karato e Wu (1993). [3]: Extracted from
Andrés-Martínez et al. (2019) for upper and lower crust. [4]: Extracted from Salazar-Mora et al. (2018).

3.1 Model setup

For this work, I used two-dimensional models with an extension of 3 000 km in the

horizontal direction and 700 km in the vertical direction with 2 km of grid resolution in

both directions, resulting in 525 000 elements.

The domain is subdivided into five layers: air, upper crust, lower crust, lithospheric

mantle, and asthenospheric mantle. The thickness of each layer is, respectively, 40, 15, 20,

65 and 560 km resulting in a lithosphere with 100 km thick. Figures 3.1 and 3.2 show the

numerical setup. The white layer is the “sticky air” layer, the dark brown layer represents

the upper crust, the light brown layer represents the lower crust, the dark green represents

the lithosphere mantle and the light green represents the asthenospheric mantle. Table 3.2

shows the values of the parameters for each layer. The values of Ea, V , n and A were taken

from Karato and Wu (1993) and Gleason and Tullis (1995). The choice of these values was

to reproduce the rheologies of quartz and hydrated and dehydrated olivine in our models.

I explored six different groups of scenarios: the first I added a thicker cratonic keel in

the central portion of the model of 100 km thick (Figure 3.1a), the second with a cratonic

keel 200 km thick, and the third with no cratonic keel. The other three groups follow the

same pattern of cratonic thickness as the first three groups, however, I assumed a linear

thinning of the lithosphere on the right border of the model to simulate a free lithospheric
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border (Figure 3.2a). Therefore, the lithosphere is only mechanically connected with the

left side of the domain.

The initial thermal structure of the lithosphere is only depth-dependent and is repre-

sented by the black vertical profile in Figures 3.1a and 3.2a. We considered a model with

a temperature of T0 at the top and Tb at the bottom (see Table 3.1). The temperature is

obtained by the solution of the steady-state diffusion equation:

κ
∂T (z)

∂z2
+

H(z)

cp
= 0 (3.11)

where H(z) is the internal heat production of each layer (Table 3.2), assuming that the

surface is at 0◦C (T0) and the base of the lithosphere is at 1300◦C. Only under the cratonic

keel, we assumed an initial linear variation of temperature with depth (Tl) as:

Tl(z) =
Tlaz

L
(3.12)

where Tla = 1300◦C is the temperature at the lithosphere-asthenosphere boundary (LAB),

and L is the cratonic thickness.

The asthenospheric temperature increases adiabatically up to the bottom of the do-

main (Ta). This expression is obtained by integrating the adiabatic temperature gradient

(Mckenzie and Bickle, 1988) and can be expressed as:

Ta(z) = Tpe
−gαz/cp (3.13)

where g is gravity, α the coefficient of thermal expansion, z the depth, cp the specific

heat of the mantle, and Tp = 1262◦C is the potential temperature for the mantle, which

represents the temperature the mantle would be at if it were decompressed and brought

to the surface (z = 0). The temperature was fixed in all boundaries during the numerical

simulations, and the nodes in the air layer were maintained at T0 = 0◦C.

The velocity boundary conditions are represented by the horizontal black lines at the

left and right borders of the domain indicated in Figures 3.1a and 3.2a and were chosen

to ensure the conservation of mass following a similar procedure adopted by Silva and

Sacek (2022). In this case, new asthenospheric material enters the numerical domain

on the left side, compensating material removal at the right border by the movement of
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Figure 3.1: a) Numerical setup for the scenarios of Groups I, II, and III. The white layer is the “sticky
air” layer, the dark brown layer represents the upper crust, the light brown layer represents the lower
crust, the dark green represents the lithosphere mantle and the light green represents the asthenospheric
mantle. b) Initial yield strength envelope (YSE) for numerical scenarios, the dash dot line in the lower
crust represents the decoupled lithosphere (Clc = 1), and the solid line represents the coupled lithosphere
(Clc = 10). c) Strain softening.

the lithosphere relative to the asthenospheric mantle. This velocity boundary condition

represents a reference frame fixed on the lithospheric plate, observing the asthenospheric

mantle flowing rightward. This is equivalent to a reference frame fixed on the bottom

of the upper mantle observing the lithosphere moving to the left. In an analogy with a

boat, we defined the “cratonic bow” as the portion of the keel facing the counterflow of the

asthenosphere while the “cratonic stern” is the opposite side of the keel (Figures 3.1 and

3.2). We tested different relative velocities (vr) between the lithosphere and the bottom of

the upper mantle: 0, 1, 2, 4, and 8 cm/yr.

The normal and tangential components of the velocity were fixed on both lateral boun-

daries. In contrast, at the upper and lower boundaries, the normal velocity component
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Figure 3.2: a) Numerical setup for the scenarios of Groups IV, V, and VI. The white layer is the “sticky
air” layer, the dark brown layer represents the upper crust, the light brown layer represents the lower
crust, the dark green represents the lithosphere mantle and the light green represents the asthenospheric
mantle. b) Initial yield strength envelope (YSE) for numerical scenarios, the dash dot line in the lower
crust represents the decoupled lithosphere (Clc = 1), and the solid line represents the coupled lithosphere
(Clc = 10). c) Strain softening.

was fixed and the tangential component was free.

3.2 Classification of the numerical scenarios

The numerical scenarios are divided into six main groups according to the cratonic keel

thickness and lithosphere geometry: Groups I, II, and III using the lithosphere geometry

shown in Figure 3.1 (lithosphere connected with both sides of the domain) with a cratonic

thickness of 100, 200, and 0, respectively. Groups IV, V, and VI using the lithospheric

geometry shown in Figure 3.2 (lithosphere connected only with the left side of the domain)

with a cratonic thickness of 100, 200, and 0, respectively.
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These six groups are subdivided into two subgroups of scenarios. One for a “decoupled

lithosphere” and the second for a “coupled lithosphere”. The difference between them is

the scale factor for viscosity for the lower crust Clc: in the decoupled model Clc = 1, while

for the coupled model Clc = 10 (Figures 3.1b and 3.2b), assuming the quartz rheology

for the entire crust, meaning that for Clc = 10 this layer is 10 times more viscous at the

same temperature, pressure and strain rate regime when compared to Clc = 1. A portion

of the stress can still be vertically transmitted through the different layers depending on

the stress and temperature of the entire lithosphere. Nevertheless, for clarity in the text,

I have chosen to define the scenario with a stronger coupling as the “coupled lithosphere”

and the one with a weaker coupling as the “decoupled lithosphere”.

To investigate the effects of relative velocity between the lithosphere and the base

of the model, each subgroup contains five scenarios with different velocities, ranging from

vr = 0−8 cm/year, compatible with the range of absolute velocity of the lithospheric plates,

based on the HS3-NUVEL 1A model (Gripp and Gordon, 2002) (see arrows in Figure 1.1),

considering that the velocity of the plates is calculated relative to the hotspots.



Chapter 4

Numerical Results

In this section, I show the results of the numerical scenarios using a realistic rheological

behavior for the crust and mantle as presented in Chapter 3.

4.1 Effects in the intraplate stress near a cratonic keel

To evaluate the effects on the intraplate stress, I calculated the deviatoric stress (σxx)

in the x direction as:

σxx = ηeff ϵ̇xx (4.1)

where ηeff is the effective viscosity, and ϵ̇xx is the strain rate component given by:

ϵ̇xx =
∂vx
∂x

(4.2)

where vx is the x component of the velocity. Initially, I present the results of the coupled

lithosphere (Clc = 10) scenarios. The reference models (vr = 0 cm/yr) for Groups I and

II (Figures 4.1a - 4.4a) and IV - V (Figures 4.7a - 4.10a) have similar patterns of stress

throughout the model domain with predominantly extensional stresses in the lithosphere

adjacent to the cratonic keel and compressional stresses predominantly in the cratonic keel.

However, this pattern does not occur in Groups III (Figures 4.5a - 4.6a) and VI (Figures

4.11a - 4.12a) because of the absence of the cratonic keel.

After 40 Myr, the magnitude of the horizontal stresses for Group I was approximately

2 − 3 MPa (Figures 4.2a), ∼ 20 MPa (Figures 4.4a) for Group II, 3 − 4 MPa (Figures

4.8a) for Group IV, and 8 − 10 MPa (Figures 4.10a) for Group V. Group III shows a

compressional regime in the border, and extensional regime in the center of the numerical
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scenario (Figure 4.6a), while Group VI presents a extensional regime for the whole model

domain (Figure 4.12a). Both Groups III and VI present magnitudes lower than 2 MPa.

These stresses are predominantly due to an isostatic-flexural adjustment of the lithosphere

because, at the initial stage, there are isostatic differences between the cold cratonic keel

and its neighboring regions.

Figure 4.1: Stress field of the numerical scenarios of Group I with a coupled lithosphere (Clc = 10), after
40 Myr, with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere and the
base of the model varying between vr = 0− 8 cm/year. The black line delimits the lithosphere. Observe
that the scale of the velocity vector, indicated in red, varies among the graphs.

When a relative velocity between the lithosphere and the base of the model is imposed

(Figures 4.1b-e, 4.3b-e, 4.7b-e, and, 4.9b-e) there is a significant change in the stress

pattern in comparison with the reference models (Figures 4.1a, 4.3a, 4.7a, and, 4.9a).

Extensional stresses primarily act in the cratonic bow (left portion) of the lithosphere,

while compressional stresses are predominant in the cratonic stern (right portion). The

crust in the left portion of the craton is in the extensional stress regime, changing to a
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Figure 4.2: Stress profile after 40 Myr of the numerical scenarios of Group I with a coupled lithosphere
(Clc = 10), with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.

compressional regime on the right side. The point at which the transition occurs varies

slightly with changing velocity, with higher velocities extending the transition point further

into the interior of the craton. It also varies with the cratonic thick, reaching approximately

200 km for Groups I and IV (Figures 4.2 and 4.8), 250 km for Group II (Figure 4.4), and

500 km for Group V (Figure 4.10).

Additionally, higher velocities increase the stress magnitude in the lithosphere. For

Groups I and IV, with a relative velocity vr = 1 cm/year, the stresses in the crust range

from 2 to 3 MPa, and 2 to 8 MPa, respectively, while in the model with vr = 8 cm/year,

the stresses were in the range of 3 to 6 MPa and 6 to 12 MPa, respectively (Figures 4.2a-d

and 4.8a-d). As for Groups II and V, when considering a thicker cratonic keel (200 km

thick), the stresses in the lithosphere exhibited a substantial increase in magnitude. The
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Figure 4.3: Stress field of the numerical scenarios of Group II with a coupled lithosphere (Clc = 10),
after 40 Myr, with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.

maximum stress magnitude of ∼ 20 MPa for Group II and ∼ 40 MPa for Group V, for

the scenario with vr = 1 cm/year and over 50 MPa and 90 MPa, respectively for the

scenario with vr = 8 cm/year (Figure 4.10). In the numerical scenarios without a cratonic

keel (Figures 4.6 and 4.12) there is a minimal increase in the stresses in the lithosphere

(< 1 MPa) when increasing the relative velocity.

I performed new experiments considering a decoupled lithosphere (Clc = 1) for the same

set of scenarios presented above. For an analogy, the lithosphere is like a “jelly sandwich”

(Burov et al., 2006), with a less viscous region separating the crust and the lithospheric

mantle. This is seen comparing Figures 4.13 - 4.16. The lithosphere for the models with

a decoupled lithosphere presents a less viscous region near z = 25 km (Figures 4.15 and

4.16) which does not occur on the coupled scenarios (Figures 4.13 and 4.14). Also, for
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Figure 4.4: Stress profile after 40 Myr of the numerical scenarios of Group II with a coupled lithosphere
(Clc = 10), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.

the reference scenario (vr = 0) cm/yr the asthenosphere is more viscous (Figures 4.13a -

4.16a) than in the scenarios with relative movement between the lithosphere and the base

of the model ((Figures 4.13b-e - 4.16b-e)). This difference occurs for two reasons: First,

the strain rate tensor is affected by the velocity field, thus affecting the effective viscosity.

Second, the heat transfer due to advection is enhanced with a higher velocity field, which

in turn keeps the asthenospheric mantle warm for a longer time.

For the decoupled scenario of Groups I (Figures 4.17 and 4.18) and IV (Figures 4.21

and 4.22), there is no significant variation observed in comparison with the coupled model

(Figures 4.1, 4.2, 4.7, and 4.8).

Now, for Groups II (Figures 4.19 and 4.20) and V (Figures 4.23 and 4.24) the decoupled

scenarios had an increase in the maximum stress magnitude in the lithosphere of approxi-
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Figure 4.5: Stress field of the numerical scenarios of Group III with a coupled lithosphere (Clc = 10),
after 40 Myr, with no cratonic keel, and, with a relative velocity between the lithosphere and the base of
the model varying between vr = 0− 8 cm/year. The black line delimits the lithosphere. Observe that the
scale of the velocity vector, indicated in red, varies among the graphs.

mately 10 MPa. The decoupled lithosphere implies a less rigid lithospheric plate, so the

same basal drag on the cratonic keel, as in the coupled scenario, results in higher stresses

in the decoupled scenarios.

One major difference between models of Groups I, II, and III and models of Group

IV, V, and VI both for the coupled and the decoupled lithospheres, is the stress pattern

in the right border. While Groups I, II, and III have a symmetrical pattern within the

right and left border. For Groups IV, V, and VI this is not the case, as the intraplate

stresses are dissipated throughout the mechanically free border on the right side. Except

for the decoupled model of Group V with vr = 8 cm/yr (Figure 4.24, red line) where the

stresses were not dissipated. In this scenario, the cratonic keel and the lithosphere were

dragged to the right and the lithosphere reached the right border of the model (Figure
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Figure 4.6: Stress profile after 40 Myr of the numerical scenarios of Group III with a coupled lithosphere
(Clc = 10), with no cratonic keel, and, with a relative velocity between the lithosphere and the base of
the model varying between vr = 0− 8 cm/year. Profiles were taken in different depths (z). The black line
delimits the extensional/compressional regime of stresses.

4.16e). Furthermore, the magnitude of the stresses was drastically reduced to the left

portion of the cratonic keel, and the viscosity structure at approximately x = 800 km

resembles the formation of a rift (Figures 4.24 and 4.16e). In the same scenario with a

coupled lithosphere (Figure 4.14e) this drag of the cratonic keel and the lithosphere was

relatively small compared with the decoupled scenario, which supports the idea of a more

rigid and stronger lithosphere on the coupled scenario.
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Figure 4.7: Stress field of the numerical scenarios of Group IV with a coupled lithosphere (Clc = 10),
after 40 Myr, with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.

4.2 Edge-driven convection induced in the asthenosphere by lateral

variations in lithospheric thickness

In the reference scenario (with vr = 0 cm/year) of Group V (200 km cratonic keel), for

a coupled and decoupled lithosphere, it is possible to see the edge-driven convection (King

and Anderson, 1998) at the borders of the craton (Figures 4.9a and 4.23a). This occurs

essentially due to the lateral variation of lithospheric thickness and thermal effects related

to the horizontal conduction of heat from the asthenosphere to the cratonic keel, resulting

in the cooling of the adjacent asthenospheric mantle and consequent downward flow. Due

to the symmetry of the cratonic keel in the model, the convective pattern in the reference

scenario is the same on both sides of the keel.
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Figure 4.8: Stress profile after 40 Myr of the numerical scenarios of Group IV with a coupled lithosphere
(Clc = 10), with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.

However, with the imposed velocity of the lithosphere relative to the base of the model,

this symmetry disappears (Figures 4.9b-e and 4.23b-e). The convective cells are affected

by the horizontal asthenospheric flow and can be amplified or suppressed depending on

the direction of lithospheric movement relative to the base of the upper mantle (King and

Anderson, 1998). The vigor of the edge-driven convection is smaller along the cratonic

bow (left side) than along the cratonic stern (e.g. Figure 4.9b-d).

Furthermore, this effect is not restricted to these two models and is visible in all models

with a cratonic keel. Even in models of Groups I and IV, with a cratonic keel of 100 km

(Figures 4.1, 4.7, 4.21,4.7) the edge-driven convection starts to be visible and is affected

by the relative motion of the lithosphere and the base of the model.

Due to the choice of the length of the velocity vectors and due to the differences in
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Figure 4.9: Stress field of the numerical scenarios of Group V with a coupled lithosphere (Clc = 10),
after 40 Myr, with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.

velocity scales in Figures 4.7 and 4.9, the edge-driven convection is more visible in scenarios

with lower velocities. However, the edge-driven convection is more vigorous in the higher

velocity scenarios. Also, a thicker cratonic keel produced an even more vigorous convection

cell in the adjacency of the cratonic region (e.g. Figure 4.9e).

4.3 Topographic effects

Ultimately, I calculated the evolution of the dynamic topography for the scenarios

of Groups I, II, IV, and V (Figures 4.25 to 4.32) both for the coupled and decoupled

lithosphere, showing the results in intervals of 5 Myr.

For the coupled and decoupled scenarios of Groups I and IV, with a cratonic keel of

100 km (Figures 4.25, 4.27,4.29, and 4.31), the differences between the dynamic topography
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Figure 4.10: Stress profile after 40 Myr of the numerical scenarios of Group V with a coupled lithosphere
(Clc = 10), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.

and the reference model oscillated around zero, without a clear correlation with the position

of the cratonic keel. The only notable difference is a subsidence of < 200 m in the center of

the cratonic keel (x = 1500 km) for the scenarios of Group IV with v = 8 cm/yr (Figures

4.27 and 4.31).

On the other hand, in the scenarios of Groups II and V, with a thicker cratonic keel,

regional subsidence on the right side of the cratonic region (x = 2000 − 2300 km) is

observed (Figures 4.26, 4.28, 4.30, and 4.32). This subsidence is enhanced for higher

velocities, varying from ∼ 200 m for the scenario with vr = 1 cm/yr to > 600 m for the

coupled scenario of Group V with vr = 8 cm/yr. For the decoupled model of Group V,

this value gets near to ∼ 1000 m. However, it is important to remember that this is the

model where the cratonic keel was dragged to the right by the basal traction, and this can
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Figure 4.11: Stress field of the numerical scenarios of Group VI with a coupled lithosphere (Clc = 10),
after 40 Myr, with no cratonic keel, and, with a relative velocity between the lithosphere and the base of
the model varying between vr = 0− 8 cm/year. The black line delimits the lithosphere. Observe that the
scale of the velocity vector, indicated in red, varies among the graphs.

be a result of the lithosphere colliding on the right border of the model domain.

Also, in the Group V and coupled scenario with vr = 8 cm/yr (Figure 4.32), there is

a small subsidence at x = 1000 km of < 200 m. Additionally, a broad positive dynamic

topography is also observed on the left portion of the craton (x < 900 km), in the coupled

and decoupled models of Group II and the coupled model of Group V (Figures 4.26, 4.28,

and 4.30). For the decoupled model of Group V (Figure 4.32), there is an abrupt decrease

in the dynamic topography at x = 900 km when compared to the coupled model.

Except for the scenario with a decoupled lithosphere of Group V (Figure 4.32), it

appears that the degree of coupling of the lithosphere does not have an impact on the

dynamic topography.
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Figure 4.12: Stress profile after 40 Myr of the numerical scenarios of Group VI with a coupled lithosphere
(Clc = 10), with no cratonic keel, and, with a relative velocity between the lithosphere and the base of
the model varying between vr = 0− 8 cm/year. Profiles were taken in different depths (z). The black line
delimits the extensional/compressional regime of stresses.
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Figure 4.13: Viscosity structure of the numerical scenarios of Group IV with a coupled lithosphere
(Clc = 10), with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in black on the right side, varies among the graphs.
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Figure 4.14: Viscosity structure of the numerical scenarios of Group V with a coupled lithosphere
(Clc = 10), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in black on the right side, varies among the graphs.
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Figure 4.15: Viscosity structure of the numerical scenarios of Group IV with a decoupled lithosphere
(Clc = 1), with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in black on the right side, varies among the graphs.
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Figure 4.16: Viscosity structure of the numerical scenarios of Group V with a decoupled lithosphere
(Clc = 1), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in black on the right side, varies among the graphs.
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Figure 4.17: Stress field of the numerical scenarios of Group I with a decoupled lithosphere (Clc = 1),
after 40 Myr, with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.
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Figure 4.18: Stress profile after 40 Myr of the numerical scenarios of Group I with a decoupled lithosphere
(Clc = 1), with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.
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Figure 4.19: Stress field of the numerical scenarios of Group II with a decoupled lithosphere (Clc = 1),
after 40 Myr, with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.
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Figure 4.20: Stress profile after 40 Myr of the numerical scenarios of Group II with a decoupled lithosphere
(Clc = 1), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.
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Figure 4.21: Stress field of the numerical scenarios of Group IV with a decoupled lithosphere (Clc = 1),
after 40 Myr, with a cratonic keel of 100 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.
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Figure 4.22: Stress profile after 40 Myr of the numerical scenarios of Group IV with a decoupled
lithosphere (Clc = 1), with a cratonic keel of 100 km thick, and, with a relative velocity between the
lithosphere and the base of the model varying between vr = 0−8 cm/year. Profiles were taken in different
depths (z). The black line delimits the extensional/compressional regime of stresses.
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Figure 4.23: Stress field of the numerical scenarios of Group V with a decoupled lithosphere (Clc = 1),
after 40 Myr, with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere
and the base of the model varying between vr = 0 − 8 cm/year. The black line delimits the lithosphere.
Observe that the scale of the velocity vector, indicated in red, varies among the graphs.
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Figure 4.24: Stress profile after 40 Myr of the numerical scenarios of Group V with a decoupled lithosphere
(Clc = 1), with a cratonic keel of 200 km thick, and, with a relative velocity between the lithosphere and
the base of the model varying between vr = 0 − 8 cm/year. Profiles were taken in different depths (z).
The black line delimits the extensional/compressional regime of stresses.
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Figure 4.25: Difference between the dynamic topography from models of Group I with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 100 km thick,
and a coupled lithosphere (Clc = 10).
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Figure 4.26: Difference between the dynamic topography from models of Group II with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 200 km thick,
and a coupled lithosphere (Clc = 10).
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Figure 4.27: Difference between the dynamic topography from models of Group IV with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 100 km thick,
and a coupled lithosphere (Clc = 10).
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Figure 4.28: Difference between the dynamic topography from models of Group V with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 200 km thick,
and a coupled lithosphere (Clc = 10).
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Figure 4.29: Difference between the dynamic topography from models of Group I with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 100 km thick,
and a decoupled lithosphere (Clc = 1).
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Figure 4.30: Difference between the dynamic topography from models of Group II with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 200 km thick,
and a decoupled lithosphere (Clc = 1).
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Figure 4.31: Difference between the dynamic topography from models of Group IV with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 100 km thick,
and a decoupled lithosphere (Clc = 1).
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Figure 4.32: Difference between the dynamic topography from models of Group V with a velocity varying
between vr = 1 − 8 cm/yr and the reference model (vr = 0 cm/yr) with a cratonic keel of 200 km thick,
and a decoupled lithosphere (Clc = 1).
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Chapter 5

Discussion

5.1 Dynamic topography induced by asthenospheric flow under cratonic

keels

Dynamic topography is the topographic perturbation induced by the convective move-

ment in the mantle and consequent stresses at the base of the lithosphere. This topography

component differs from the isostatic or “tectonic” topography (Braun, 2010) because it only

persists while there is convection in the mantle. Upward movement in the asthenosphere

induces positive dynamic topography while downward movement induces a regional subsi-

dence.

In the numerical scenarios, the imposition of a relative velocity between the lithosphere

and the base of the upper mantle perturbed the convective pattern in the mantle, especially

enhancing the edge-driven convection along the cratonic stern, i.e. when the asthenospheric

flow occurs from the cratonic keel towards the thinner lithospheric portion (Figure 5.1).

This is especially visible in the coupled and decoupled scenarios of Groups II and V,

where the cratonic keel is thicker (Figures 4.3b-e, 4.9b-e, 4.19b-e, and 4.23b-e). In these

scenarios, the downward movement of the edge-driven convection adjacent to the craton

induces negative dynamic topography (subsidence) with a wavelength of ∼ 300 km and

amplified magnitude for the scenarios with faster relative velocity (Figures 4.26, 4.28,

4.30, and 4.32). The topographic perturbations in the numerical scenarios are calculated

assuming an air-loaded condition. Therefore, the amplitude S of a few hundred meters

of subsidence along the cratonic stern can be amplified due to the load of water and/or

sedimentary layer. For simplicity, assuming local isostasy, the amplification in the vertical

displacement w = Sρi/(ρm − ρi), where ρi is the density of the infilling material, can be
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w ≈ 0.43h for water (ρi = 1000 kg/m3) and w = 2h for sedimentary layer with mean

density ρi = 2200 kg/m3. Therefore, the total subsidence S +w can be of the order of one

kilometer considering the load of the sedimentary layers.

Figure 5.1: A graphical summary of the numerical results of the coupled scenario of Group V with a
cratonic keel of 200 km, Clc = 10, and vr = 8 cm/yr. Showing the main features observed in the model.

One plate that presents a thick cratonic keel with more than 200 km and a high velocity

(∼7.4 cm/year) with respect to HS3-NUVEL-1A hotspot reference frame is the Australian

Plate. The speed of the northward movement of Australia towards Southeastern Asia is

anomalously high relative to other plates with thick continental lithosphere (Figure 1.1)

and is mainly guided by the subduction of oceanic slabs along the New Guinea–Pocklington

subduction zone (Schellart and Spakman, 2015).

The Australian Plate combines the ingredients to create vigorous edge-driven convec-

tion along the cratonic stern, which represents the southern portion of Australia. This

region is characterized by a regional negative anomalous topography (Czarnota et al.,

2013) of the order of 1 km that cannot be explained by simple isostatic equilibrium (see

dots in Figure 5.2).

The wavelength of the negative dynamic topography predicted in our model of approxi-



Section 5.1. Dynamic topography induced by asthenospheric flow under cratonic keels 93

mately 300 km is probably superposed to a long wavelength negative dynamic topography

centered on the Australian–Antarctic discordance (Sandiford, 2007). The northward mo-

vement of the plate induced the continuous displacement of the southern margin outside

this long wavelength negative dynamic topography (Sandiford, 2007), creating a N-S tilt of

the entire continent, resulting in a continuous uplift and consequent decrease of the mag-

nitude of the negative dynamic topography in the southern portion of Australia since the

Miocene (Czarnota et al., 2013). The modeled magnitude of the long wavelength dynamic

topography is of the order of -250 and -300 m southward of Australia (Heine et al., 2010),

assuming a water-loaded scenario. Therefore, I propose that the magnitude of dynamic

topography along the southern margin of Australia can be explained by the combination of

long-wavelength features induced by deeper components of mantle convection superposed

with the subsidence induced by edge-driven convection in the upper mantle.
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Figure 5.2: Map of the continental lithospheric thickness and residual topography of the Australian Plate.
The continental lithospheric thickness data extracted from Priestley and McKenzie (2013) and topography
data from Czarnota et al. (2013).

Furthermore, the N-S continental tilt (Sandiford, 2007) can be partially explained by
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the decrease in the absolute northward speed of Australia since 30 Ma (see Figure 1a in

Schellart and Spakman, 2015), with a decrease estimated in 2 cm/year during this time

interval. Based on the numerical scenarios, I expect that the plate slowdown results in

a decrease in the amplitude of the dynamic topography (compare the different curves in

Figure 4.28). As a consequence, the cratonic stern is uplifted and the region adjacent

to the cratonic bow subsides, reproducing the continental tilt as observed in Australia.

Therefore, the numerical scenarios indicate that the absolute value of dynamic topography

is positive along the adjacent margin of the cratonic bow and negative along the cratonic

stern margin, but changes in the speed of the lithospheric plate through the geological time

can modulate the amplitude of the dynamic topography, inducing uplift or subsidence.

It is important to highlight that the numerical scenarios do not take into account

the influence of the subducting slab and the consequent influence on mantle convection.

Therefore, we cannot reproduce the complex convective pattern of northern Australia due

to the proximity to the New Guinea–Pocklington subduction zone.

5.2 Influence of the asthenospheric flow under cratonic keels on the crustal

stress state

The numerical models with different relative plate velocities show that higher velocities

induce higher horizontal deviatoric stress in the lithosphere, which agrees with the velocity

having a direct relation to the basal drag force exerted on the lithosphere by the asthe-

nospheric flow (Turcotte and Schubert, 2014). Varying the velocity from 1 to 8 cm/year

increased the lithospheric stress by a factor of 2 to 4. Furthermore, the thin asthenosphe-

ric layer beneath the cratonic keel increases shear traction from viscous drag (Conrad and

Lithgow-Bertelloni, 2006; van Summeren et al., 2012).

Models with a velocity of vr = 4 cm/year and a cratonic keel 100 km thick which

resembles the velocity and the cratonic thickness for the South American Plate (Figure

1.1) produced horizontal deviatoric stress of approximately 7 MPa. For the South Ame-

rican Plate, the magnitude of the lithospheric stress is around 20 − 30 MPa (Figure 5.3

Assumpção et al., 2016; Coblentz and Richardson, 1996), so the stress induced by the

asthenospheric mantle flow alone can explain 20%− 30% of the total lithospheric stress.

Models with a velocity of vr = 1 − 2 cm/year and a cratonic keel 100 km thick which
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resembles the velocity and cratonic thickness for the African Plate (Figure 1.1) produced

horizontal deviatoric stress of approximately 3 − 5 MPa of magnitude. Coblentz and

Sandiford (1994) predicted tectonic stresses in continental Africa to varying from 8 −

15 MPa, so the models could reproduce about 20% of the total lithospheric stress.

Figure 5.3: Main stresses due to Gravitational Potential Energy (GPE) calculated from lateral density
variations based on the CRUST1.0 model. Extracted from Assumpção et al. (2016)

For the Australian Plate, there are lateral variations in the continental thickness (Far-

rington et al., 2010), so we decided to compare both models with a cratonic keel of 100 and

200 km thick and velocity vr = 8 cm/year. We extracted the predicted stresses for three

different profiles (Figure 5.2) across the Australian continent from Reynolds et al. (2002),

which considered three tectonic processes to model the forces acting on the Indo-Australian

Plate: First, they accounted for intraplate sources related to lateral variations in gravita-

tional potential energy in the lithosphere. This includes ridge push and buoyancy forces

associated with continental margins and elevated continental crust. Second, it considered



96 Chapter 5. Discussion

plate boundary forces, which account for collisional and subduction boundaries, mostly in

the northern region and at the New Zealand boundary. Lastly, drag forces acting on the

base of the plate were considered, but these forces were primarily used to balance the net

torque acting on the plate.

The extracted σxx and σyy for continental Australia needed to be transformed into a

system of coordinates equivalent to the direction of the plate velocity. This transformation

is achieved using the following equation:

σ′
xx = σxxcosθ + σyysinθ + 2τxysinθcosθ (5.1)

where θ is the angle between the σxx component of the principal stress and the direction

of the movement of the plate.

In the scenario with a cratonic keel of 100 km thickness, the horizontal stresses had

maximum magnitudes of approximately 7− 9 MPa, and Reynolds et al. (2002) predicted

that the lithospheric stress is approximately 9 − 25 MPa (Figure 5.4). So the deviatoric

stresses produced by the interaction of asthenospheric flow with the base of the lithosphere

in this scenario can represent a portion of the total stresses in continental Australia. On

the other hand, in the numerical scenario with a thicker cratonic keel (200 km thick), the

stresses resulting from the relative motion of the lithosphere reach magnitudes of almost

20 MPa of compressional stresses in the upper crust in the region equivalent to the southern

portion of the Australia continent, compatible with the magnitude predicted by Reynolds

et al. (2002).

In the northern part of the continent, the numerical scenarios predicted extensional

stresses, which greatly differs from Reynolds et al. (2002) which predicted compressional

stresses. The numerical scenarios presented here have some limitations as the plate boun-

daries are not included, especially for subduction zones that can highly interfere with the

mantle flow (Hu et al., 2017), or collisional boundaries that have a significant effect on the

intraplate stresses (Coblentz et al., 1995, 1998; Reynolds et al., 2002), which is supposed to

be the main factor for this difference, because the northern portion of the Indo-Australian

Plate is surrounded by collisional boundaries (Eurasian Plate, Sumatra, New Guinea).

Also, a 2D model limits the mantle flow around a craton which on a three-dimensional

model can flow in more directions and at the same time allows for more complex keel
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geometries to be explored. Paul et al. (2023) show that mantle flow is diverted downward

beneath thick and viscous cratonic roots, which induces compressive stress regimes within

cratonic interiors. In this work, it was noticed the predominance of extensional forces in

the cratonic bow and compressional efforts at the cratonic stern.
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Figure 5.4: a-d) Stress profile after 40 Myr of the numerical scenarios for both models, where relative
velocity between the lithosphere and the base of the model vr = 8 cm/year. Profiles were taken in different
depths (z). e) Data extracted from Reynolds et al. (2002). The colors are respective to the profile in Figure
5.2. The black line delimits the extensional/compressional regime of stresses.
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Chapter 6

Conclussion

This thesis aimed to evaluate the interaction of asthenospheric flow with cratonic keels,

using 2D thermo-mechanical numerical simulations taking into account realistic rheological

behavior for the crust and mantle. These numerical scenarios showed that the asthenosphe-

ric flow under the cratonic lithosphere induced extensional stresses in the cratonic bow and

compressional stresses in the cratonic stern. The magnitude of the deviatoric stress indu-

ced by this asthenospheric flow affects the stresses in the entire lithospheric plate, with

an important impact on the upper crust. Moreover, the relative velocity between the

lithosphere and the base of the upper mantle and the cratonic thickness influence the mag-

nitude of the intraplate stress, with higher velocities and thicker cratons increasing the

magnitude of the stresses. Another aspect that can influence the magnitude of the stresses

in the lithosphere is the degree of coupling between the upper crust, and the lithospheric

mantle. A higher degree of coupling makes the lithospheric plate more rigid implying lower

intraplate stresses. On the other hand, a decoupled lithosphere, being less rigid, is more

susceptible to the basal drag and presents stresses of higher magnitudes.

The edge-driven convection adjacent to the cratonic lithosphere is affected by the ho-

rizontal asthenospheric flow induced by the lithospheric movement relative to the base of

the upper mantle. It is reduced along the cratonic bow and amplified along the cratonic

stern. In the scenarios with a thick cratonic keel (200 km), the vigor of the edge-driven

convection along the cratonic stern is sufficient to induce negative dynamic topography of

hundreds of meters, which can be amplified with the load of water and sediments.

The numerical results can explain part of the regional topographic and bathymetric

evolution of Australia predicting a regional subsidence along the southern margin.

Additionally, the slowdown of the northward movement of the Australian plate during
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the last 30 Ma could have contributed to a decrease in the amplitude of the dynamic topo-

graphy perturbation, resulting in a relative uplift of the southern margin of Australia and

a relative subsidence along the northern margin, partially explaining the N-S continental

tilt of the plate.

This thesis provided important insights into the complex interaction between the asthe-

nospheric mantle dynamics and thick cratonic keel, highlighting its influences on the

lithospheric stresses, and dynamic topography. However, 2D models have limitations when

considering the inherently three-dimensional nature of geological processes. Therefore, the

use of 3D is necessary to address some aspects as the plate boundaries and the asthe-

nospheric flow around cratonic keels in more complex geometries.
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