
Ondas P e S

A Figura 1 mostra como se propagam as ondas sísmicas P e S. Neste exemplo as ondas se propagam na direção x. Cada partícula do meio se desloca (vibra) durante a passagem da onda. O deslocamento de cada partícula na onda P é paralelo à direção de propagação (a onda P é **longitudinal**), e o deslocamento das partículas na passagem da onda S é perpendicular à direção de propagação (a onda S é **transversal**).

Note também que durante a passagem das ondas sísmicas, o meio se deforma, como pode ser observado pelo cubinho pintado. As ondas sísmicas, portanto, propagam não apenas vibrações, mas também deformações, tensões e energia.

Figura 1.1 Ondas P e S propagando-se em um meio elástico na direção **x**. O bloco da esquerda mostra o meio sem ondas e sem deformação. As colunas das ondas P e S mostram as posições das partículas e a deformação do meio em cinco instantes diferentes. A seta indica a propagação da onda.

Exercícios

1. Qual a velocidade de propagação da onda P e da onda S na Fig. 1.1 ? Qual o comprimento de onda em cada caso? E o período ?

- 2. Examine o comportamento do cubinho pintado e diga qual o tipo de deformação que o meio sofre na onda P e na onda S. Quais os tipos de tensões correspondentes? Há variação de volume na onda P? E na onda S?
- 3. Examine um canto qualquer do cubinho durante a passagem da onda P e faça um gráfico do movimento de partícula em função do tempo (desenhe um sismograma). Chame o deslocamento da partícula de \mathbf{d} (vetor) cujas componentes são (\mathbf{d}_x , \mathbf{d}_y). Para a onda P use uma amplitude máxima arbitrária qualquer. Faça o mesmo para a onda S. Note que a amplitude máxima do deslocamento da onda S é indicada na Fig. 1.1 como 1 mm. No caso da onda S, use a linha tracejada como referência para a situação sem deformação. Nos dois casos indique o período da onda nos seus sismogramas.
- 4. Uma onda P se propaga numa direção inclinada fazendo um ângulo de 30° com o eixo y. Desenhe esquematicamente os deslocamentos d_x e d_y . A amplitude máxima do deslocamento da onda P (na direção de propagação!) é de 2 μ m (i.e., 4μ m pico-apico). Indique as amplitudes máximas nos seus sismogramas. Suponha uma onda senoidal com uma frequência de 20Hz. Estime a ordem de grandeza da velocidade de partícula.

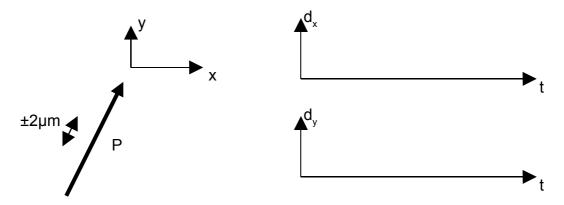
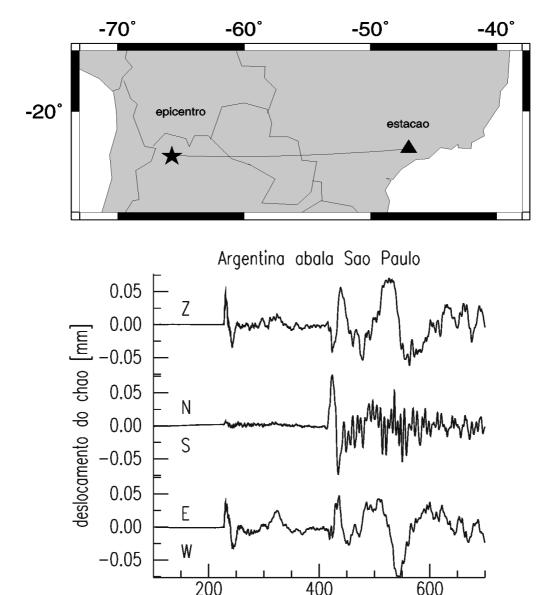



Figura 1.2

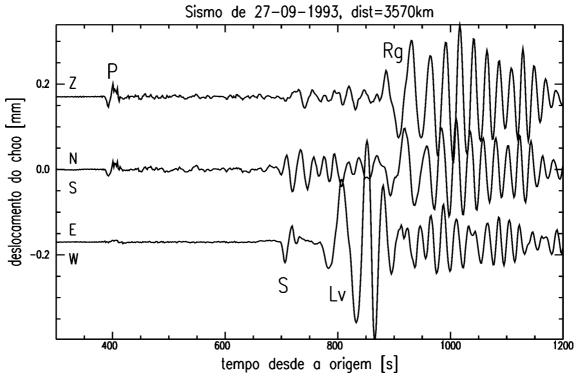
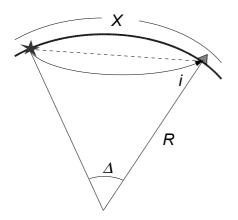

- 5. Os sismogramas abaixo foram registrados por uma estação sismográfica em Valinhos, SP, e mostram as três componentes do movimento do chão (componentes vertical, horizontal EW e horizontal NS). As ondas vieram de um terremoto do norte da Argentina ocorrido em janeiro de 1997 com magnitude 6,4 m_b.
 - a) Faça a composição do movimento do solo para a primeira onda e demonstre que ela é uma onda longitudinal (i.e., onda P). Isto é, combine as duas componentes horizontais e faça o diagrama de movimento de partícula entre 220s e 280s. Repita para as componentes vertical e EW. Analise os dois diagramas e mostre que a vibração das partículas é paralela à direção de propagação da onda.
 - b) onde você identificaria a chegada da onda S? Por que?

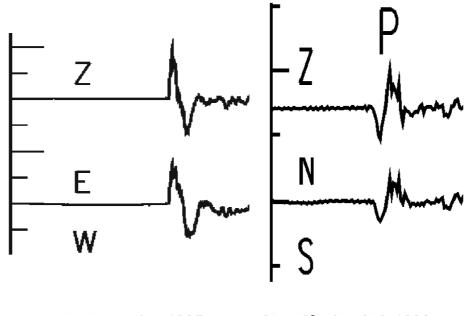
Figura 1.3. Três componentes do movimento do chão registrado em Valinhos. Na componente Z, deslocamento positivo significa movimento do chão para cima. Nas horizontais, amplitudes positivas significam sentido Norte e Este, respectivamente. As vibrações deste sismo foram sentidas em São Paulo nos andares superiores de vários edifícios, num fenômeno já ocorrido dezenas de vezes anteriormente.


tempo desde origem [s]

6. Os sismogramas abaixo mostram as ondas P, S e as de superfície (Love e Rayleigh) de um sismo a 3570 km de distância de uma estação em Poços de Caldas, MG. Analise a vibração da onda P e determine a direção do epicentro (i.e., faça o diagrama de movimento da particula no plano horizontal EW-NS, e no plano vertical-NS). Os sismogramas foram deslocados verticalmente e portanto a escala de amplitudes é apenas relativa. Rg é onda de superfície Rayleigh, Lv é a Love.

Figura 1.4 Sismogramas de um terremoto de magnitude 6,1 m_b registrado em Poços de Caldas, MG.

7. Velocidade média de propagação. Suponha que as ondas P e S tenham uma trajetória retilínea (linha tracejada na Fig. 1.5) entre o foco (estrela) e a estação (triângulo) e que o foco do terremoto seja superficial (i.e. que o sismo tenha profundidade focal 0 km). O percurso medido ao longo da superfície (X) e o ângulo medido no centro da Terra (Δ) estão relacionados por X (km) = 111.1 Δ (°).


O raio da Terra, **R**, é 6.371 km. Para os dois sismos analisados nos exercícios anteriores, determine a velocidade média das ondas P e S. Primeiro calcule as distâncias percorridas (trajeto linear). Leia o tempo de percurso das ondas P e S nos sismogramas das Figs. 1.3 e 1.4.

Para o sismo da Argentina, Fig. 1.3, $\Delta = 17.3^{\circ}$.

Para o sismo de 1993, Fig. 1.4, X=3570 km.

Figura 1.5

- a) Por que a velocidade média das ondas P e S são maiores para o sismo mais distante? Como isso explicaria o fato de que a trajetória real (linha contínua) é uma curva? Qual a relação Vp/Vs ?
- b) A Fig. 1.6 abaixo mostra um zoom da onda P dos dois sismos estudados. Faça um diagrama do movimento da partícula no plano vertical-radial, para cada um deles, medindo com precisão as amplitudes nos sismogramas (desconte a espessura da linha!). Estime assim o ângulo de incidência, i, das ondas P na superfície sob as estações. Por que o ângulo de incidência do sismo do Atlântico de 1993, é menor do que o da Argentina?

a) Argentina 1997

b) Atlântico Sul, 1993

Figura 1.6 Ampliação da onda P dos sismos da Argentina (Fig. 1.3) e do Atlântico Sul (Fig. 1.4) para estimativa do ângulo de incidência na superfície.