New high-quality paleomagnetic data from the Borborema Province (NE Brazil): Refinement of the APW path of Gondwana in the Early Cambrian

Autor Paul Yves Jean Antonio
Autores Antonio, P.Y.J., Trindade, R.I.F. da, Giagomini, B., Brandt, D. & Tohver, E.
Resumo

The Neoproterozoic-Paleozoic transition (~541 Ma) was a turning point in Earth’s history resulting in great biological changes between the microbial Precambrian life and the Ediacaran biotic revolution with the occupation of the sedimentary substrate, the dawn of biomineralization and the appearance of the earliest multicellular organisms. In parallel, this period is marked by a large plate reorganization leading to the assembly of Gondwana and by major climatic changes (extreme glacial events). Due in part to a poor paleomagnetic database for the different cratons in the Ediacarian-Cambrian times, the global paleogeography at that time remains controversial. In this study we present a new high-quality paleomagnetic pole (R = 7) for the Monteiro dyke swarm in the Borborema Province (NE Brazil) located at 18.2°S and 344.9°E (A95 = 11.7° K = 9.3). They are fine-grained hornblende dolerite dated by U-Pb on zircon at ~538 Ma. Rock magnetic data indicate that magnetite and pyrrhotite are the main remanence carriers. Positive baked-contact tests support the primary remanence obtained for these dykes (19 sites). A positive reversal test (classified C) was also obtained from the 14 sites with negative inclination and the 5 sites with positive inclination, indicating that the paleosecular variation was eliminated. Our new key pole is not consistent with the classical apparent polar wander path of the Gondwana which consists of a long track from a southern polar position at ~590 Ma to an equatorial position at ~520 Ma, and suggests instead rapid and small oscillations of the APW, after the end of the large IITPW at ca. 560 Ma. These TPWs are supposedly caused by changes in the inertia tensor of the Earth due to internal mass redistribution, related to rapid changes in subduction velocity. Links of these rapid oscillations and the timing of the Cambrian radiation could be crucial to understand the early history of animal life.

Programa Geofísica
Ano de publicação 2021
Tipo de publicação Artigo publicado em revista
Nome da revista/jornal Precambrian Research
Localidade Publicação Internacional
Volume 360, 15 July 2021, 106243
Número 1
DOI https://doi.org/10.1016/j.precamres.2021.106243
Página inicial 1
Página final 1
Página web https://www.sciencedirect.com/science/article/pii/S0301926821001716
Anexo Antonio, P.Y.J., Trindade, R.I.F. da, Giagomini, B., Brandt, D. & Tohver, E..pdf